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Abstract

Although sinusoidal models have been shown to be useful for time-scale and pitch modi�cation of

voiced speech, objectionable artifacts often arise when such models are applied to unvoiced speech.

This correspondence presents a sinusoidal model-based speech modi�cation algorithm that preserves

the natural character of unvoiced speech sounds after pitch and time-scale modi�cation, eliminat-

ing commonly-encountered artifacts. This advance is accomplished via a perceptually-motivated

modulation of the sinusoidal component phases that mitigates artifacts in the reconstructed signal

after time-scale and pitch modi�cation.
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I Introduction

Sinusoidal models have been shown to be useful for signal transformations such as pitch and time-scale

modi�cation of speech and music signals [1, 2]. The validity of such representations for modeling quasi-

stationary harmonic signals (e.g., voiced speech) has been well-documented. For convenience, however,

unvoiced speech is typically represented by the same model within speech modi�cation algorithms.

This approach can impart an undesirable and often-cited \tonal" character to the noise-like unvoiced

signal, especially during time scale expansion and other transformations [1].

Some researchers have proposed harmonic/stochastic decompositions of the signal for speech cod-

ing [3, 4] or modi�cation [5, 6]. Most of these are based on representing the periodic portion of the

signal by a sinusoidal model and then modeling the residual signal as the output of a time-varying

�lter excited by white noise. Although these types of decompositions can mitigate some artifacts, it

is more desirable to handle harmonic and stochastic elements of the signal within a single, uni�ed

framework.

The algorithm presented here is an extension of theAnalysis-by-Synthesis/Overlap-Add (ABS/OLA)

sinusoidal model [2, 7]. In this extension, unvoiced or noise-like segments of the signal are represented

by sinusoidal components, but the phases of these sinusoids are modulated to eliminate the tonal

artifact in the signal after modi�cation and preserve its noise-like character. A perceptual motivation

for the algorithm is given, followed by a frequency-domain interpretation of its resulting e�ect on the

signal and the results of a subjective evaluation of the method.

II The ABS/OLA Sinusoidal Model

In the ABS/OLA model, the input signal s[n] is represented by a sum of overlapped short-time signal

frames sk[n],

s[n] =
K�1X
k=0

w[n� kNs]sk [n] (1)

where K is the number of synthesis frames, Ns is the frame length, w[n] is a window function that

is nonzero over the interval [�Ns; Ns], and sk[n] represents the kth frame of the synthesized signal.

Each frame sk[n] is represented as the sum of a small number of sinusoidal components, given by

sk [n] =
L�1X
l=0

Akl cos(!
k
l n + �kl ) (2)

where L is the number of sinusoidal components in the frame, and Akl ; !
k
l ; and �

k
l are the kth frame

sinusoidal amplitudes, frequencies, and phases, respectively. An iterative analysis-by-synthesis proce-
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dure is performed to �nd the optimal component amplitudes, frequencies, and phases for each frame,

based on a mean-squared error criterion. The frequencies !kl are not constrained to be harmonically

related, but components are organized into a \quasiharmonic" structure with one sinusoid associated

with each harmonic of the fundamental.

Overlap-add synthesis is performed by a computationally-e�cient procedure that uses the inverse

fast Fourier transform to compute each frame sk [n], rather than sets of oscillator functions as in [1].

Time-scale modi�cation is performed by expanding or contracting each frame sk [n], while adjusting

component frequencies and phases to preserve pitch pulse shape. Pitch modi�cation is performed by

altering the component frequencies, phases, and amplitudes such that the fundamental frequency is

modi�ed while the speech formant structure and general waveform shape characteristics are main-

tained [7].

III Phase Randomization

Perceptual motivation

Empirically, it has been found that the ABS/OLA model is capable of faithfully reproducing both

voiced and unvoiced sounds when a frame update of 10 milliseconds or less is used in synthesis.

However, when time-scale expansion and/or pitch raising operations are performed, the unvoiced

segments take on the above-mentioned \tonal" character.

This role of time-scale expansion in causing this artifact can be explained in terms of current

theories of pitch perception. One theory suggests that the brain assigns the perceived pitch of a

tone complex based on the intervals between peaks in the �ne time structure of the signal at various

points on the basilar membrane, integrated over a time interval on the order of several milliseconds [8].

Thus, any arbitrary set of sinusoidal components with constant amplitude and frequency will produce

regular patterns at various places across the basilar membrane, and the brain will recognize prominent

periodicities in these patterns. When the sinusoidal components remain stationary for a duration

signi�cantly large with respect to the integration time of this human pitch detection mechanism, the

resynthesized speech signal begins to take on a tonal character.

It has also been observed that this tonal artifact is exacerbated by pitch-raising modi�cation.

In [9], McAulay and Quatieri justify the use of the sinusoidal representation for unvoiced speech by

an argument based on the Karhunen-Lo�eve expansion for noise-like signals. They conclude that this

representation for unvoiced speech is valid when the sinusoidal components are spaced \closely enough"

together that the ensemble power spectral density is relatively smooth across frequency. When the
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fundamental frequency of the sinusoidal components is raised in a given frame, the components become

more widely spaced in frequency, leaving a spectral shape that possesses more distinct spectral lines,

as shown in Figure V. Thus, the model for the noise becomes less mathematically representative of

the signal characteristics. This e�ect tends to worsen the perceived tonal noise artifact.

In a previous study of vowel perception under various acoustic manipulations [10], it was found

that randomizing the phases of a sinusoidal model of voiced sounds resulted in an aperiodic, noise-like

signal. Similarly, it has been noted [11] that the aperiodicity of unvoiced sounds can be preserved

under time-scale and pitch modi�cation by randomly modulating the phase of the components of the

sinusoidal model. The nominal frequency of each component is kept roughly the same, but the time

structure of combined sets of these components along the basilar membrane no longer exhibits the

periodicities originally detectable by the listener [10].

The above arguments suggest that applying a random phase modulation of the sinusoidal com-

ponents can maintain perception of randomness in the modi�ed signal by (i) insuring that long-term

periodicities in the time waveform are disrupted over the course of the synthesis frame, and (ii)

maintaining the smoothness of the original signal spectrum.

Overlap-add phase randomization

This phase randomization approach can be implemented within the context of an overlap-add model

by subdividing each synthesis frame and randomizing the phase o�sets between components prior to

synthesis of each subframe. Referring to Equation (2), each Ns{sample frame can be divided into

several smaller subframes of length Nsub, as shown in Figure 2. It is possible to resynthesize a signal

identical to the original synthesis frame by

sk[n] =
1X

m=�1

ws[n�mNsub]
L�1X
l=0

Al cos(!ln+ �l;m) (3)

where ws[n] is a window function that is nonzero over [�Nsub; Nsub] (the frame k notation has been

suppressed). Equations (2) and (3) are made equal by letting �l;m = �kl for all m, where �kl is the

original phase estimate for the frame in Equation (2).

Alternatively, the phase o�sets between sinusoidal components in each subframe can be varied by

adding a random o�set to each phase term:

�l;m = �kl + Vl  l;m (4)

where  l;m is a uniform random variable over some subinterval of [��; �] and Vl 2 [0; 1]. Thus, when

Vl = 0 for all l, the frame sk [n] will be resynthesized in its original form, but when Vl = 1, the phase
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o�sets will be completely random from subframe to subframe. This suggests the possibility of using a

\soft-decision" weighting of Vl 2 [0; 1] to produce varying degrees of phase randomization.

Although the previous equations have been presented as time-domain summations of cosines, sk[n]

can be computed much more e�ciently using a sequence of Ns=Nsub IFFT's and an overlap-add

procedure analogous to that used in the original model [2]. In practice, the number of subframes is

usually made proportional to the time-scale expansion factor.

Frequency-domain interpretation

Interpreting the above algorithm in the frequency domain provides several interesting insights into the

behavior of the algorithm. Speci�cally, the e�ect on each component can be described as a modulation

that increases the e�ective bandwidth of each component, smoothing the signal spectrum.

Rewriting the subframe overlap-add equation (3) in terms of complex signals and substituting

Equation (4) produces

sk[n] = <e

(
1X

m=�1

ws[n�mNsub]
L�1X
l=0

Ale
j(!ln+�l+Vl  l;m)

)
: (5)

This equation can be rewritten to incorporate a function bl[n] that modulates the lth sinusoidal signal

component,

sk [n] = <e

(
L�1X
l=0

bl[n]Ale
j(!ln+�l)

)
(6)

where

bl[n] =
1X

m=�1

ws[n�mNsub]e
jVl  l;m :

The function bl[n] has the Fourier transform

Bl(e
j!) = Ws(e

j!)
1X

m=�1

e�j(m!Nsub�Vl l;m): (7)

where Ws(ej!) is the Fourier transform of the subframe synthesis window.

If Vl is set to 0 for all l, then the summation in Equation (7) will produce a pulse train whose

pulses coincide with the nulls of Ws(e
j!) for ! 6= 0, resulting in Bl(e

j!) = �(!). In contrast, if Vl = 1

for all l, it can be shown that the summation will result (on average) in a at spectrum across all

frequencies, and Bl(e
j!) will, on average, assume the shape of the window transform Ws(e

j!). Thus,

as Vl is gradually varied between 0 and 1, the basis function Bl(ej!) will transition from a spectral

line to a stochastic function with the frequency-domain shape of Ws(ej!), as shown in Figure 3. The

maximum bandwidth of Bl(ej!) can be varied by varying the subframe length Nsub, since this will

alter the mainlobe width of the window transform.
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The increase in bandwidth of each sinusoidal component results in a smoothing of the resynthesized

signal spectrum. This is demonstrated in the bottom and middle panels of Figure V, where the modi�ed

signal spectrum is shown with and without the phase randomization algorithm applied, respectively.

The use of a modulating function such as bl[n] to preserve randomness in the sinusoidal repre-

sentation is reminiscent of ideas in [4], where \narrowband basis functions" were used to represent

unvoiced speech in a speech coding application. In contrast, here a straightforward extension of the

overlap-add synthesis procedure provides for a computationally e�cient synthesis of these modulated

components, avoiding the explicit generation and �ltering of long random sequences, as in [4].

Voicing measure

As mentioned above, the model lends itself well to a mapping of the amount of aperiodicity in the

input signal to the parameter Vl in Equation (4). This parameter can also be varied across frequency

in the synthesis of signals that contain both a voiced and unvoiced component. Several approaches

to estimating the \degree of voicing" are mentioned in the sinusoidal modeling and speech coding

literature. In [12], for example, the signal-to-noise ratio between a set of harmonic components and

the original speech spectrum is mapped to the degree of voicing, with the implication that a harmonic

model will �t the spectrum better in voiced speech. A similar notion is used in a frequency-dependent

voicing decision in [3]. The synthesis method developed in this paper can be coupled with any of

these analysis methods to implement frequency-dependent voicing decisions and to provide smooth

transition from voiced to unvoiced states.

IV Subjective comparison

To con�rm the the appropriateness of the phase randomization approach, a subjective comparison test

was conducted using 25 volunteer subjects. Of these 25 subjects, two were experienced in subjective

speech quality assessments, and 23 were na��ve listeners. The subjects were asked to compare pairs

of utterances presented via headphones, where each pair consisted of one utterance synthesized using

the phase randomization algorithm and one synthesized using ABS/OLA without this extension. The

order of the sentence pairs and of the elements within each pair was selected randomly for each subject.

Subjects were instructed to select utterance \A" or \B" according to preference \in terms of overall

sound quality," and were allowed to replay the stimuli as many times as desired.

The speech material used as input to the algorithm consisted of eight short phrases selected to

represent an equal number of male and female voices and to contain several unvoiced phonemes. The
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voicing analysis method used was similar to that suggested in [12], in which all frequencies above a

cuto� are declared \unvoiced," and this cuto� frequency is varied according to voicing characteristics.

Four test conditions were applied to each of the eight sentences. Time-scale modi�cations by factors of

2:0, 3:0, and 4:0 (slower speech) were applied with no pitch modi�cation, and time-scale modi�cation

by a factor of 3:0 was also applied in combination with a pitch modi�cation by a factor of 1:5 (higher

pitch).

The results of the four test conditions described were as follows:

test modi�cation factors % preferring phase rand

A � = 1:0; � = 2:0 81.0

B � = 1:0; � = 3:0 79.0

C � = 1:0; � = 4:0 73.5

D � = 1:5; � = 3:0 72.5

The factors � and � correspond to pitch modi�cation and time-scale modi�cation factors, respectively.

Each value given represents a percentage of responses preferring the phase randomization method

over the standard modi�cation method, averaged over the eight utterances and 25 subjects. Based on

this number of trials, the test results show a preference for the phase randomization method that is

statistically signi�cant (p < 0:001) in all cases.

Although it should be expected that the algorithm would provide greater improvement of speech

quality in more drastic modi�cations, this was not observed in the response percentages for Tests B,

C, and D. One explanation of this e�ect is as follows: the subjects were instructed only to compare

\overall sound quality" and not any speci�c aspect of the speech signals. Since most of the subjects

participating in the test were not experienced in critical listening tests, they tended to judge both

exemplars as more \unnatural" than unmodi�ed speech for drastic modi�cations of time scale or

pitch. Because of this, the response percentages tended to gravitate slightly towards a result more

consistent with guessing rather than de�nite preference of one or another method. This hypothesis

was con�rmed by interviews with subjects after the experiment. It is also interesting to note that the

two subjects who had previous critical listening experience chose the phase randomization method in

100% of the tested cases.

V Summary

In this correspondence, an extension to the ABS/OLA sinusoidal speech modeling and modi�cation

algorithm has been presented, along with a perceptual motivation for this algorithm and an analysis
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of its frequency-domain e�ects on the signal. This re�ned model enables the application of sinusoidal

time-scale and pitch modi�cation algorithms to unvoiced and noise-like signal segments as well as

voiced speech and eliminates the problem of unnatural \tonal" artifacts that often arise in modi�cation

of unvoiced speech.
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Figure 1: Periodogram (50 ms rectangular window) of 80 ms unvoiced speech segment. (top) original

signal; (middle) signal after time-scale expansion by a factor of 4 and pitch shift by a factor of

2; (bottom) resulting signal after modi�cation using phase randomization algorithm. (frame length

before modi�cation = 10 ms, Nsub = 5
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Figure 2: Subframe overlap-add synthesis.
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Figure 3: Illustration of e�ect of phase randomization on frequency domain sinusoidal basis functions

for Vl = f0:0; 0:2; 0:5; 1:0g (from top to bottom) in Equation (4), averaged over 30 trials. Note that

the bandwidth of the basis functions approaches the bandwidth of the window transform Ws(ej!) as

Vl approaches 1.0.
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