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Summary

In this research, the application of the Analysis-by-Synthesis/Qverlap-Add sinusoidal
model to synthesis of speech and singing voice is investigated, and a set of basic ex-
tensions and improvements of the capabilities of the model are developed. First, the
application of the model to concatenation-based text-to-speech (TTS) synthesis is
described. Methods for concatenating segments extracted from a corpus of recorded
speech are presented, and challenges associated with removing perceptible mismatches
in time/frequency structure around the segment boundaries are identified. Methods
for smoothing the signal near these boundaries using the sinusoidal model are pre-
sented. The implementation of this model within a commercial T'TS system serves
as a research testbed. Results of a comparison between the new method and the
commonly-used Pitch-Synchronous Overlap Add (PSOLA) method indicate that the
method performs equally as well as the PSOLA method in the cases tested.

Next, through the extension of the text-to-speech synthesis method to the syn-
thesis of singing, it is shown that the flexibility of the sinusoidal model approach en-
ables the incorporation of various musically-interesting effects into the synthesized sig-
nal. These effects include vibrato, pitch variation and transition effects, and changes
correlated with change in vocal effort. Also in this system, methods of corpus design
and unit selection specifically designed for singing synthesis are developed. Despite
the fact that a relatively small voice inventory is used, the system is capable of syn-
thesizing a musically-pleasing singing voice that maintains the perceived identity of

the vocalist recorded to create the unit inventory.



Finally, several improvements to the sinsusoidal model itself are detailed. The
causes of artifacts present in the original ABS/OLA model are found by theoretical
and empirical analysis, and methods for eliminating or diminishing these artifacts
are presented. Among the innovations is a method for phase randomization based
on subframe synthesis of the signal. It is shown through the results of a subjective
comparison test that the method improves the quality of unvoiced speech synthesized

using the model.
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CHAPTER 1

INTRODUCTION

1.1 Text-to-Speech Synthesis

The problem of automatic conversion of textual information to synthetic speech has
been a subject of research since the advent of the digital computer. Speech is the pri-
mary method of communication among humans, and it is natural to strive to enable
humans to interact with computers using a speech-based interface. This technology
has also been used to compensate for the loss of speech-related faculties by humans.
The applications of text-to-speech (TTS) technology as a means of compensating for
handicaps are many and varied, including reading machines for the blind, teaching
aids for children with speech disabilities, and other aids for those with vocal impair-
ments [1, 2, 3, 4].

Beyond these specialized applications, TTS also has begun to play a major role
in “information access” technologies. The worldwide telephone network provides an
infrastructure for access to various information sources, and speech provides a natural
interface to such information. Presently in many such interactive voice response (IVR)
systems, prerecorded messages read by a human being are used to provide information
or prompt the user. This strategy becomes impractical, however, in applications

where [5]

e the text is unpredictable or dynamic (e.g., up-to-the-minute weather reports or

stock price quotes, email reading),



e access to a large database is required (e.g., catalog order information),

e cases where new prompts need to be frequently recorded, but must have a

constant voice identity.

Text-to-speech synthesis can provide a significant advantage in these applications and
many others.

The earliest attempts to synthesize speech (circa 1930) involved mechanical
or electrical resonant filters that were excited to produce synthetic voice sounds or
“copy” existing recorded speech [6]. Later, as the source/filter theory of speech pro-
duction was further advanced by Fant [7] and others, more elaborate models and
implementations of the vocal tract transfer function were developed. Along with
many others, the work of Klatt [8] was instrumental in advancing the state of the art
in such formant synthesis systems, in which voiced speech production is represented
as the excitation of a set of series or parallel resonances (the vocal tract) by a shaped
pulse train (glottal pulses).

More recently, the approach taken by many researchers in the T'T'S community
has been to move away from the use of such speech production or acoustical models.
Instead, systems based on the concatenation of subword-sized units of recorded speech
have emerged. This approach backs away from traditional scientific attempts to
model subtle aspects of the speech signal, and instead simply encodes all unknown
information by storing samples of the actual waveform. This approach has resulted
in a significant advancement in the quality and “naturalness” of speech produced by
state-of-the-art T'TS systems.

Until fairly recently, the memory and storage limitations of general-purpose
computing hardware have made concatenation-based TTS systems rather impracti-
cal, since the quality of results generally improves as the size of the inventory of
concatenated segments increases. Modern personal computers and workstations are
now quite well-suited to this type of system, and concatenation-based systems have

become the method of choice for many commercial efforts [5, 9].



A TTS system based on concatenation poses special research problems. Since
there is no acoustic production model to control as in formant synthesis, prosody
modification must be performed to change the durations and pitch period of the con-
catenated segments. Due to pitch differences, coarticulation, and other allophonic
variations, the speech signals across the point of concatenation may be fairly differ-
ent. The voice quality and other characteristics of the talker’s speech may also vary
across the joining boundary of concatenated segments. Various smoothing opera-
tions must be incorporated into the synthesis process to make these discontinuities
less perceptible. These signal processing techniques lie at the heart of the synthesis
algorithms, and are crucial to the synthesis of high-quality, natural-sounding speech.

The predominant technique for prosodic modification within the concatenative
TTS context has been Pitch-Synchronous Overlap Add (PSOLA) resynthesis of the
speech waveform, which involves extracting, copying, and repositioning windowed
speech waveforms [10, 11]. Although fairly good results can be achieved with this
method in many cases, it is not without shortcomings. These shortcomings can result
in synthetic speech that possesses significant objectionable artifacts. The existence
of such artifacts implies that a T'TS system output is less likely to be intelligible or
natural-sounding, thus making information reception more difficult for users.

Since concatenation-based synthesis relies on encoding and prosodic modifica-
tion of actual speech waveforms, a wide array of speech signal modeling techniques
can be applied to the problem. Many of these are found in the speech coding liter-
ature. Early concatenation work involved analysis, concatenation, and smoothing of
linear prediction (LP) parameters, excited by a pitch pulse train or white noise [12].
As reflected in much of the speech coding literature, this representation is itself quite
a coarse approximation, and it produces poor speech quality when certain assump-
tions fail to hold true [13]. Many variations on this source/filter representation have
been developed for coding applications over the past 25 years, including analysis-

by-synthesis methods such as multipulse LPC [14], code-excited linear prediction



(CELP) [15], and various others. Each of these takes a step towards a closer ap-
proximation of the original signal. However, not all are well suited to high-quality
prosodic modification, because the focus in their development has been on finding an
“efficient” (i.e., easy to code) model, rather than a “flexible” model that is useful for

high-quality prosody modification.

1.2 Sinusoidal Modeling

The desire for an alternative speech model that is both an “efficient” and more general
representation than pitch-excited LPC led to the development of a sinusoidal model
of speech in the mid-1980’s. Although similar ideas were published by others around
the same time, the main pioneers of this work were R. J. McAulay and T. F. Quatieri.
This model has been used in a wide range of applications, including speech modifica-
tion [16, 17], co-channel speech separation [18], aids for the hearing-impaired [19, 20],
speech enhancement [21], audio signal modeling [22], psychoacoustic models [23], and
others. As is apparent from this list, the sinusoidal model is a useful and flexible
signal model that lends itself well to many applications.

An extension to McAulay and Quatieri’s work was proposed by George and
Smith [24, 25, 26]. This algorithm, called the Analysis-by-Synthesis/Overlap-Add
(ABS/OLA) model, was found to have some advantages over McAulay and Quatieri’s
model in terms of signal quality and synthesis computational complexity. The main
application of this model has been as a method for prosodic modification of speech,
so this makes it a natural candidate for application in a text-to-speech system.

Although sinusoidal models represent a significant advancement in the area of
speech modification, they do fall short in some respects. Since sinusoidal models
are best suited to representing periodic signals, the representation of unvoiced speech
often suffers, especially under modification. This shortcoming can lead to undesirable

artifacts in synthesis, again detracting from the quality of the overall system.



1.3 Research Overview

This thesis presents the application of a sinusoidal model analysis/synthesis algo-
rithm to concatenation-based speech synthesis. As mentioned above, the ABS/OLA
sinusoidal model is an attractive candidate for this type of application, since it is
capable of achieving high-quality speech modification, while offering a relatively low
computational complexity in synthesis. Algorithms for concatenating and smoothing
subword speech units taken from an inventory of sinusoidally-modeled speech are pre-
sented, and the performance of the method is examined in detail. An extension of this
method to the synthesis of singing voice is presented as well, to futher demonstrate
the flexibility of the model.

As mentioned, sinusoidal models are generally capable of high-quality speech
modification, but still suffer from certain artifacts, mainly in unvoiced speech. This
thesis also presents algorithms for mitigating these deficiencies. Several enhancements
of and extensions to the ABS/OLA sinusoidal model will be presented, including
methods for improving the results in modification of unvoiced speech.

Through the presentation of this improved sinusoidal model and its application
in a TTS system, it will be shown that this model can provide a framework for high-
quality speech and voice synthesis, offering advantages over competing methods. The

thesis is organized as follows:

Chapter 2 first presents background information on the topic of sinusoidal modeling.
This section introduces time-scale and pitch modification methods based on
sinusoidal models and presents other relevant issues for following sections. The
second half of the chapter presents an overview of current approaches to the text-
to-speech conversion process, with the purpose of putting the research presented
into its proper perspective within the scope of the various challenges associated

with TTS.

Chapter 3 begins with an in-depth theoretical analysis of the time-scale and pitch



modification algorithms in the ABS/OLA sinusoidal model, conducted with the
purpose of explaining commonly-encountered artifacts. After this analysis, sev-
eral extensions to the model are proposed and their implementations discussed

and evaluated.

Chapter 4 details the application of the improved ABS/OLA model to a text-to-
speech system. The commercially-available LAUREATE II TTS system from
British Telecom is used as a basis for the implementation. Algorithms for anal-
ysis, concatenation, smoothing, and synthesis of the synthetic speech waveform
are presented, as are the results of a comparison with a competing synthesis

method.

Chapter 5 presents an extension of the sinusoidal model framework to the synthesis
of singing, demonstrating the ability of the model to synthesize and control
subtle aspects of the speech signal. It also offers the opportunity to explore the
application of the model in an environment less reliant on a linguistically-based

front-end analysis of text.

Finally, the thesis concludes with a summary of contributions and directions

for future research.



CHAPTER 2

BACKGROUND

2.1 Sinusoidal Modeling

Sinusoidal models attempt to represent the input signal by a small number of sinu-
soidal components at any given instant in time, while still maintaining “perceptual
equality” with the original input signal. A “sparse” representation of this sort is
advantageous for speech coding, where it is desirable to transmit only a minimal
number of parameters that describe the signal. For the purposes of speech modifica-
tion, a sparse representation is also desirable, because it leads to more tractable and

computationally efficient solutions to time-scale and pitch modification.

2.1.1 The McAulay/Quatieri Model
Analysis/Synthesis

McAulay and Quatieri introduced the initial form of their sinusoidal model in 1984 [27].
In the model, the speech signal s(t) is modeled as the sum of a small number of si-

nusoids with time-varying amplitudes and frequencies,

s(t) = ;Az(t) cos(¢y(t)) (2.1)

where A,(t) represents the amplitude and ¢;(t) represents the phase of the [th sinu-
soidal component. The phase ¢;(t) is found by the integrating w;(¢), the time-varying



instantaneous frequency of the [th sinusoid,

bi(t) = /0 " a(r)dr + 6i(0). (2.2)

It should be noted that phase offsets of the various components relative to each other
are not constrained in any way.

To find the parameters of the model, A;(¢) and ¢;(t), the DFT of windowed
signal frames is calculated, and the peaks of the spectral magnitude are selected from
each frame. Depending on the pitch period of the speaker, anywhere from 20 to
80 peaks are typically necessary to represent a given frame. The amplitudes and
instantaneous frequencies of the peaks are then noted, and a “nearest-neighbor” peak
matching algorithm is used to relate the frequencies of sinusoids in one frame to
those in the next frame. During stationary segments of the utterance (e.g., sustained
vowels), these frequencies match each other with minimal variation of amplitude or
frequency. However, when characteristics of the utterance change abruptly, as during
unvoiced sounds and transitions, the parameters vary considerably from frame to
frame.

Based on the results of the peak-matching algorithm, parameter “tracks” are
created by linearly interpolating the component amplitudes and frequencies to de-
scribe the evolution of one frame into another. “Births” and “deaths” of parameter
tracks are also allowed to account for the possibility of a changing number of peaks
from one frame to the next. Figures 2.1(a) and 2.1(b) give examples of the frequency
tracks obtained by this procedure. Once these tracks are obtained, reconstruction
can be accomplished by substituting the amplitude and frequency parameters into
Equations (2.1) and (2.2) for each value of the time index ¢.

The model thus describes the speech waveform solely by the amplitude and
frequency values of a relatively small number of sinusoids from each frame. An im-
portant point to note is that the parameter tracks used to reconstruct the waveform
are described in a functional form. This offers a very simple and intuitive framework

for time-scale and frequency-scale modification of the speech waveform, since the time
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index ¢ and the frequency tracks {w;(¢)} in these functions can be altered prior to
resynthesis.

In [28], McAulay and Quatieri introduce explicit representation of the phase! of
each component sinewave into the model, addressing phase coherence issues associated
with the original “magnitude-only” model [27]. In this formulation, AF, wF, and 6F,
the amplitude, frequency, and phase, respectively, of the [th sinewave component of
the signal, are estimated from the DFT magnitude peaks in the kth frame. As in the
first model, the amplitudes and frequencies are submitted to the matching algorithm
and linearly interpolated to derive the Ith amplitude/frequency track given by A,(?)
and wy(t).

In contrast to the magnitude-only model, however, here the phase function
¢1(t) is not defined simply as the integral of the instantaneous frequency. Instead, a

cubic phase interpolation function of the form
di(t) =+t +at® +nt? (2.3)

is fit to the set of measured phases 6F} at the frame boundaries by constraining the
slope of ¢(t) (i-e., the frequency) and its values at the beginning and end of the frame
to be the measured values and then imposing a smoothness constraint [28].

With the phase functions {¢f(t)}/, determined for each of the L* frequency
tracks in the kth frame, the signal is resynthesized by the relation

Ik
() = ZZI AL (t) cos (g (¢))- (2.4)

for each frame. A block diagram of the complete analysis/synthesis system is depicted
in Figure 2.2.

In a simple extension to their sinusoidal model, McAulay and Quatieri [16]

proposed an approach to time-scale and pitch modification based on the following

!Note that there are two notions of phase being used here-the relative phase offsets of component
sine waves as estimated from the DFT, and the phase ¢;(t), which is the argument of the cos(:)
function in Equation (2.1).

10
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idea: Since the parameter tracks A;(t) and ¢,;(¢) are described as functions of time, the
time-scale evolution of these parameters can simply be altered to achieve time-scale
modification. Frequency-scale modification can be achieved by shifting the sinusoidal

frequencies prior to resynthesis.

Time-scale modification

In time-scale modification of speech, the goal is to change the speaker’s apparent rate
of articulation without changing the pitch of the speaker’s voice. This can be accom-
plished by first decoupling the vocal tract and glottal excitation contributions to the
speech signal, and then modifying each separately. Specifically, the time evolution of
the vocal tract parameters must be scaled (reflecting the modified rate of articula-
tion), while the excitation signal is modified in such a way that the pitch contour and
voicing characteristics change at the modified time scale, but the pitch scale remains
unaltered.

In [16], McAulay and Quatieri extend the original sinusoidal model to achieve
these speech transformations. In this extension, the vocal tract system function mag-
nitude is estimated from the signal, and the system phase is derived by imposing a
minimum phase assumption. The residual amplitude and phase after the vocal tract
effects have been removed are then assumed to be the amplitude and phase of the ex-
citation components. With these contributions separated, independent modifications
of the vocal tract and excitation time scales are facilitated.

Assuming the desired time variable ¢’ is a scaled version of the original time
variable t gives ¢’ = pt, where p > 1 corresponds to a slower articulation and p < 1
corresponds to more rapid articulation. With this, the time-scale modified amplitude

of the /th sinewave track is given by

A(t) = a(t'/p) Mi(t'/ p), (2.5)

where a,(t) and M,(t) represent the original excitation and system amplitudes as a

function of time, respectively. ;(t'), the Ith modified excitation phase, is obtained
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by integrating the time-scaled instantaneous frequency track and adding this to the

phase offset carried over from the previous frame. Specifically,

Ut) = [ il /p)dr + 6(0) (2:6)
where the time index at the beginning of the current frame is assumed to be ¢ = 0,
and ¢;(0) is the phase offset at the beginning of the frame. The I/th track system phase
¥y(t) is modified in a manner similar to the way the amplitude tracks are modified in

(2.5), giving the expression for the composite model phase

ai(t') = Y (t) + ¢y (t). (2.7)

Finally, the time-scaled waveform is synthesized as

3(t) = 2 Ai(t') cos[gi(t)] (2.8)

Although this method has the desired effect on the signal’s time scale and
pitch characteristics, the authors reported a “reverberant artifact” present in the
output [17] due to the breakdown in phase coherence of the excitation sinewaves. At
no point in the modification procedure are steps taken to preserve the correct phase
relationship between the modified components, and this results in a perceptible phase
error propagation.

In a refinement of this time-scale modification algorithm, referred to as “shape-
invariant” modification [17], this problem is circumvented, resulting in modified speech
that has no reverberant artifact and retains the shape of the original waveform. The
major improvements in the algorithm come as a result of incorporating the concept
of a pitch pulse onset time into the excitation model. The pitch pulse onset time
is defined to be the first occurrence of a pitch pulse in a frame [29]. An estimator
function for this parameter can be derived starting from the following hypothesis: if
the glottal excitation pulse train is modeled as a sum of sinusoids, then at the point in

time when a pitch pulse occurs, all the sinusoids must constructively interfere.? This

2Thus the argument of the cos(+) function in Equation (2.1) must equal 0 or 7 for each component.
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Figure 2.3: Modified pitch pulse onset time: €'(t') represents the modified version of the
excitation e(t) (after [30]).

constrains {€;(¢)}, the set of excitation component phases, to obey a linear function
of frequency

Q (t) = (t — to)wi(t), (2.9)

where & is the pitch pulse onset time measured with respect to the kth frame bound-
ary. The onset time in each frame is estimated by finding the maximum of an “onset-
time likelihood function” derived in [29].

This linear phase model can be used to find the excitation component phases at
the frame boundaries. The system phase is then found by subtracting the excitation
phase from the measured composite phase. The amplitude A;(t) and vocal tract
system phase 1;(t) can then be time-scale modified as in Equations (2.5) and (2.6)
above. However, the modified excitation phase €2;(#') must be found by calculating
a new onset time, ¢, for the modified frame. This new onset time is found by
accumulating pitch periods of the previous frame and finding the time at which the
first pitch period falls in the current frame, as shown in Figure 2.3. Note that this
assumes that accurate pitch estimation has been performed for the analysis frame.

Once the modified system and excitation phases at a particular frame’s bound-

aries have been found, they are summed to form a composite phase estimate. The
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phase track for each model component is then found by use of the cubic interpolation

procedure, and the speech is reconstructed via Equation (2.8).

Pitch and frequency-scale modification

Frequency-scale modification is the dual to time-scale modification: the goal is to alter
the frequency domain characteristics without altering the time scale of the signal.
Compression or expansion of the spectral envelope can be accomplished simply by
scaling the instantaneous frequency of each component sinewave in the model to the
desired value and resynthesizing the signal. A more challenging task, however, is to
change the pitch of the signal without changing the spectral envelope or time-scale.

Within the context of the shape-invariant modification system [17], pitch-mod-
ification can be achieved by first scaling the estimated pitch period contour P(t) by
a desired factor 3, (i.e., P'(t) = P(t)/8, where > 1 corresponds to higher pitch and
vice-versa). From this, the modified onset time t{, for each frame can be computed
as described above, and the /th excitation phase can be computed with its frequency
scaled as

(1) = (t — to) Bwr- (2.10)

Now, since the spectral envelope due to the vocal tract system response must maintain
the same shape as in the original signal, the system magnitude and phase responses

for each track must be resampled at the scaled frequencies

Mi(t) = M(Bw,?)

Yit) = Y(Bwt) (2.11)
where M (w,t) and @E(w, t) represent system magnitude and phase responses interpo-
lated from the estimated sinewave parameter tracks at time ¢. From this point, the
phases can be interpolated across frames by the cubic phase function, as in Equation

(2.3), and the pitch-scaled signal can be synthesized.
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This “shape-invariant modification” is made possible by the explicit control of
phase available in the sinusoidal signal model. The assumptions made in formulating
the model are general enough to provide natural-sounding modified speech and audio

signals, yet flexible enough to facilitate relatively easy modification.

2.1.2 The Analysis-by-Synthesis/Overlap-Add Model

In [24, 25, 26], a sinusoidal model based on different analysis, synthesis, and modifi-
cation algorithms is proposed by George and Smith. Termed the Analysis-by-Synthe-
sis/Quverlap-Add (ABS/OLA) sinusoidal model, this algorithm relies on an iterative
analysis-by-synthesis parameter estimation algorithm in lieu of the peak-picking of
the McAulay/Quatieri model. Resynthesis of the modified signal is accomplished by

using a simple inverse FF'T and overlap-add procedure.

Analysis and synthesis

In the ABS/OLA model, the input signal z[n| is represented by a sum of overlapped

short-time signal frames,
K-1
a[n] = aln] Y wyn — kNy|sg[n — EN] (2.12)
k=0

where K is the number of synthesis frames, N is the synthesis frame length, w;[n] is
a symmetric window function that is nonzero over the interval [— N, N;], and si[n]
represents the kth frame “synthetic contribution” to the synthesized signal. Each
synthetic contribution sg[n| is represented as the sum of a small number of constant-
frequency sinusoidal components, given by
-1
sk[n] = > Af cos(wfn + ¢f) (2.13)
1=0
where L is the number of sinusoidal components in the frame, and A¥ wF and ¢F

are the kth frame sinusoidal amplitudes, frequencies, and phases, respectively. The
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slowly-varying gain term o[n] is used to improve the accuracy of the sinusoidal rep-
resentation during transient signal segments.?

An iterative analysis-by-synthesis procedure is performed to find the “optimal”
component amplitudes, frequencies, and phases for the signal frame. This analysis-by-
synthesis procedure seeks to minimize the approximation error between the original
and modeled signals by searching for the sinusoidal component that will minimize a
mean-squared error at each iteration of the algorithm. It is shown in [24] that this
analysis method results in an increase in model component accuracy over the peak-
picking method; i.e., better segmental SNR values are obtained for nominal numbers
of sinusoids, and the perceived speech quality is judged to be better than for the
peak-picking analysis. However, analysis-by-synthesis also has the drawback of being
much more computationally intensive than peak-picking.

The overlap-add synthesis algorithm in the ABS/OLA system is another feature
that provides some advantages over competing sinusoidal models. Resynthesis of the
signal is accomplished by a simple inverse FFT and overlap-add procedure, while
in the McAulay/Quatieri model, a set of arbitrary-frequency sinusoidal oscillator
outputs must be computed for each output sample. Computational complexity is
concentrated in the analysis routine of the ABS/OLA system, while the synthesis
routine is relatively simple. This trait is advantageous in applications where analysis
can be performed off-line, but synthesis must be performed quickly, such as text-to-

speech waveform synthesis.

Time- and frequency-scale modification

In the McAulay/Quatieri model, the specification of a set of time-dependent param-
eter tracks provides a conceptually simple method for speech modification. These

parameter tracks are not available, however, within the framework of the overlap-add

3 Another interpretation of this envelope is as a function that slightly modifies the basis functions
of the time-frequency representation used to model each frame.
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synthesis procedure described above. In [24, 25, 26], a method that provides high-
quality speech and music modification within the overlap-add context is presented.
The foundation of this modification algorithm rests on a “quasi-harmonic” ordering
of model components, providing a framework for frequency-scale and time-scale mod-
ification that preserves phase relationships between components (hence waveform
shape). A “phasor interpolation” algorithm is incorporated into the modification
procedure to resample the excitation spectral envelope during pitch-shifting. This

algorithm will be discussed in greater detail in Chapter 3.

2.1.3 Hybrid Sinusoidal /Noise Models

Although sinusoidal signal models have been shown to provide the capability for high
quality modification of speech and music signals, they are not without their limits.
Objectionable artifacts can be noticed in drastic pitch and time-scale modifications of
signals that do not adhere to the implicit assumptions of a sinusoidal model. For ex-
ample, although noise-like signals are modeled well by a sufficient number of sinusoids
that vary in amplitude and frequency [28], when evolution of sinusoidal components
is slowed during time-scale modification, their periodicity becomes perceptible and
a “tonal” artifact is audible [17]. In performing pitch-lowering using the ABS/OLA
algorithm, a “choppy” quality is imparted to noise-like speech segments, resulting
from modulations introduced during the pitch modification process. These shortcom-
ings stem from the fact that sinusoidal signal models treat noise-like energy in the
same manner as periodic signal components, ignoring underlying differences in the
waveforms and physiological production of voiced and unvoiced sounds.

Several “hybrid” models have been proposed to attempt to mitigate this prob-
lem by treating voiced speech and noise-like energy differently in the representation.
These involve using both sinusoidal components and some form of noise-like energy
to represent the signal. Perhaps the most widely known work in this area relates

to the Multiband Excitation (MBE) vocoder developed by Griffin and Lim [31]. In
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this model, a harmonic set of sinusoids is first fit to the signal spectrum in each
analysis frame. Once the least-squares-optimal amplitudes of these harmonics have
been found, a spectral-fit comparison is made between the harmonic model spectrum
and the original signal spectrum across several frequency bands. If the signal-to-
noise ratio in a band lies below a certain threshold, then the band is declared to be
“unvoiced.” This band-by-band voicing decision is used to determine the method
of synthesis—in voiced bands, the sinusoidal amplitudes are used, while in unvoiced
bands, the sinusoids are replaced by noise energy. The noise part is synthesized by
taking the inverse FFT of a random spectrum set to zero in the voiced bands.

The noise synthesis method in the MBE model is roughly equivalent to exciting
a time-varying filter with white noise. Others have more explicitly used this same
filtering idea. For a music synthesis application, Serra and Smith [32, 33] propose a
system where the sinusoidal part of the signal is estimated (with some hand-editing)
and subtracted from the signal spectrum. The residual spectral envelope is then
smoothed and multiplied by a random noise spectrum to generate noise with the
desired spectral shape.

In a similar operation viewed from another perspective, other authors have
proposed representing bandpass noise using sinusoids modulated by lowpass random
processes, rather than by filtering a white noise signal [34, 35, 36, 37]. Some of these
involve a joint fitting of the sinusoids and so called “narrowband basis functions” to
the spectral magnitude of each frame, while others depend on voicing decisions or
manual setting of the modulation parameters [38].

A similar method to the Serra and Smith technique (though automatic) in-
volves subtracting sinusoidal components from the signal, and then estimating a com-
plex aperiodic spectral component via iterative reestimation [39, 40]. This process
produces an aperiodic component that preserves the time structure of the original
stochastic component of the signal, as demonstrated by the authors in tests with

synthetic signals. This contrasts with the two filtering methods described above, in
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which the time domain characteristics of the noise are controlled only by the time
support of the synthesis frame.

Although this method does not lend itself well to a compact, convenient model,
it does highlight an important point. Many authors have reported a lack of “percep-
tual fusion” of the harmonic and stochastic parts of these such models — meaning that
the two components can be discriminated by the listener, and they do not sound like
they come from the same source. It has been found that to create a natural-sounding
synthetic voice, it is important to maintain the time-structure of the noise, which is
concentrated around the instants of glottal opening and closing [41] in voiced speech.
Similar characteristics have been found in the analysis and synthesis of reed musical
instrument sounds, where it is important to maintain the time coherence of noise
pulses with the reed motion [42].

Others have attempted to model noise waveforms directly in the time do-
main. Richard et al. use the framework of “formant waveforms” and Poisson random
processes to model unvoiced speech in a manner that maintains the time envelope
shape [43, 44, 45].

Finally, in a revision of the “noise filtering” approach for time-scale modifica-
tion, Laroche et al. propose subtracting quasi-harmonic sinusoidal components from
the speech signal in the time-domain, then fitting an AR model to the residual spec-
trum. However, they also incorporate a smoothed time-domain energy distribution

function that maintains general time-domain amplitude characteristics [46, 47].
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Figure 2.4: Block diagram of a concatenation-based TTS system.

2.2 Text-to-Speech Synthesis

Current approaches to the text-to-speech synthesis problem incorporate ideas from a
diverse set of fields, including linguistic theory, perceptual psychology, speech produc-
tion science, digital signal processing, and structured software design. The general
text-to-speech problem can be broken into three parts (shown in Figure 2.4): (1) the
automatic conversion of text into an abstract linguistic representation, (2) generation
of prosody from this linguistic representation, and (3) synthesis of the speech wave-
form. The focus of the research proposed here is not on an entire T'TS system, but
rather on a subsystem within it. This section will present an overview of these three
blocks, the first two of which serve as a “front-end” to the techniques developed in
this thesis. This introduction will serve to put the research work described in the

Chapter 4 into its proper perspective.

2.2.1 Text Analysis

Text segmentation and normalization The most useful TTS system is one that
is able to accept input of text in any format and turn this text into speech in a
manner consistent with human expectations. The formats and expectations vary
considerably with the application. For instance, an automatic email reader should
be able to extract information such as the name of the sender from the mail header,

and be able to make sense of the typically “free-form” layout, capitalization, and
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punctuation style of informal email messages. In any case, text segmentation must
be performed on the input to delimit words, sentences, and paragraphs in the input
text. Text normalization must also be performed to convert numbers, dates, symbols,
and abbreviations into words that can be spoken.

These tasks are sometimes more difficult than one would expect. For example,
the segmentation and normalization of the following text is quite easy for humans,

who can incorporate many preconditioned expectations,
I gave Dr. Jones $8.00 on Park Dr. He lives on St. James St.

but it is much more challenging to develop a computer algorithm that accomplishes

this same task, due to the ambiguities involved.

Morphological decomposition and pronunciation Once the text has been seg-
mented and normalized, it is necessary to derive pronunciations for the input words.
Grapheme-to-phoneme conversion algorithms [6] have been a topic of much research,
but most current systems employ large online lexicons to obtain pronunciations, re-
lying on grapheme-to-phoneme rules only as a backup. The size of an online lexicon
can be drastically reduced by first doing a morphological decomposition of each input
word into “headwords,” prefixes, and affixes [48]. This eliminates the need to include
all surface forms of a word such as “love” (lover, lovers, loved, loving, ...) in the
lexicon. For example, the word “incoming” can be decomposed into the following set

of morphs:
incoming — in + come + ing

Rules for adding and/or dropping letters like the final “e” must also be included.

Irregular forms such as
saw — see + (PAST)

can be included as new headword entries for simplicity.
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From this morph decomposition, a pronunciation can be found in the lexicon
for known words. This pronunciation can be specified in terms of either a phonemic
symbol set, which involves the minimal set of contrastive sound units in a language,
or a larger set of phonetic symbols, which attempt to classify allophonic variations of

sounds associated with each phoneme.

Tagging and parsing To generate other phonological information, it is necessary
to assign part-of-speech information to each word (tagging), and build up the phrase-,
clause-, and sentence-level structure of the input text (parsing).

Some part of speech information may be obtained directly from entries in the
lexicon, but this does not, by any means, remove all ambiguity. Many words are used
as multiple parts of speech. A probabilistic approach to the tagging problem, called
stochastic tagging [49], is commonly used. In this approach, the goal is to maximize
the probability that a given word sequence W has the tag sequence T, P(T|W). The
conditional probabilities of certain tags, given surrounding tags and words, can be
estimated from large corpora of hand-marked text. Given these probabilities, the tag
sequence that maximizes P(7|W) can be found using Viterbi decoding.

Once tagging has been performed, other useful information may be extracted
from the lexicon entry for each word. For example, lexical (word-level) stress infor-
mation is needed to disambiguate between the noun and verb forms of words such as
“increase.”

Parsing of the sentence can be performed by rule-based grammar methods,
statistical methods, or hybrids of the two approaches. Again, several types of ambi-
guities crop up, including the common problem of prepositional phrase attachment,

»

as in the sentence, “The man saw the boy with a telescope.” This sentence could
imply that either the boy or the man had a telescope. A syntactical parse tree of
this sentence is shown in Figure 2.5. Although it is desirable to produce a very rich,

complete, syntactical parse, this is not always necessary. A partial parse that locates
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Figure 2.5: Syntactical parse tree for the sentence “The man saw the boy with the tele-
scope.” (after [50]). Note that this is not the only possible syntactic parse of this sentence.

phrases and clauses may be adequate to derive the necessary prosodic information in

later stages of the TTS conversion.

Continuous speech effects Further modifications of pronuncation occur as a re-
sult of syntactic context and speech rate effects. Function words often take on strong
and weak forms, depending on context. For example, “the” is pronounced differently
when it precedes a word beginning with a consonant than when it precedes a vowel.

Other effects occur when speaking rate is increased, and it is important to
model these effects to synthesize speech that does not sound “over-articulated” or
otherwise unnatural. Among these processes are the deletion of weak syllables in
words and elimination of consonants at word boundaries due to increased speech
rate. In British English, another common effect is the insertion of an /r/ sound

between a word ending in a vowel and an adjacent word beginning with a vowel.

2.2.2 Prosody Generation

As mentioned earlier, the term prosody refers to the “musical” qualities of speech—
aspects such as rhythm and intonation that are separate from the sequence of phonemes

in an utterance. The perceived “lack of naturalness” observed in even state-of-the-art
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speech synthesizers today is primarily due to the failure of current systems to generate
human-like rhythmic and intonational information from unrestricted text [51].

It should be noted that prosody generation is considered to be a very difficult
research problem. Natural prosody comes from a complex combination of linguistic,
pragmatic, and environmental factors, including semantic information (word mean-
ing), dialogue context, emotional state of the speaker, and speaking style. Much of
this information is impossible even for humans to infer from a small passage of printed
text, unless many assumptions are made. To sidestep this problem, most T'TS systems
attempt to generate discourse-neutral prosody, which makes weak assumptions about
semantics. This makes it possible to generate reasonable results from the sentence

syntax and structure only.

Prosodic phrasing In natural speech, prosodic phrases serve to divide sentences
into smaller units and aid in syntactic disambiguation. Breaks between these phrases
are marked by phrase-final duration lengthening and pause insertion, as well as in-
tonational features. Rule- and stochastic-based methods for finding the locations
and “salience” (strength) of these phrase boundaries exist [52]. These methods use
the syntactical structure and any semantic information that may be available to de-
rive a hierarchical structure for the prosodic phrases of the input text passage. This

structure is a key element of further steps in the process.

Rhythmic/metrical structure The common underpinning for many modern ap-
proaches to prosody generation is the field of metrical phonology [53, 54, 55]. This
theory aims to quantify stress as a set of relative prominence comparisons between
paired constituents in a sentence. These comparisons are represented in a binary met-

rical tree structure as shown in Figure 2.6. In the bottom tree nodes, weakly-stressed

4 Y

syllables are marked with a “w,” and stronger syllables are marked with an “s.” In
the level above this, the syllable with stonger relative prominence, called the metrical

head of the constituents below, is again marked with “s.”
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Figure 2.6: An example of a metrical tree and metrical grid for the phrase “coffee table
book,” (after [56]).

This tree is created from lexical stress information at the bottom-most level,
and then by a set of rules above this level. So called “stress shifts” can occur, which
change the prominence of certain syllables based on context. For example, the stress
of the word “thirteen” changes from a “w s” pattern to “s w” in the phrase “thirteen
men.” These effects can be modeled by first transforming the metrical tree to a
metrical grid, as shown at the bottom of Figure 2.6. From here, rules are applied to

the grid to make the stress pattern satisfy rules of eurhythmy, the theory that human

perception finds certain rhythmic patterns more pleasing than others.

Intonation synthesis An essential part of the expressiveness of human speech is
the “melodic” component of an utterance. The fundamental frequency (Fp) contour
of a sentence often disambiguates among several possible meanings of a sentence and
conveys more subtle information such as stress, emphasis, or the talker’s emotional
state. Thus, the generation of appropriate fundamental frequency contours is a vital
step in the synthesis of natural-sounding speech.

Most intonation algorithms separate the generation of the Fj contour into 2
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distinct phases, one coming from intonational phonology, the other from phonetics.*
The phonological component serves as an abstract means of describing intonational
events, while the phonetic component converts this sequence of events into a graph
of Fy versus time.

Pierrehumbert [57] has developed a widely-used phonological framework for
the description and transcription of English intonation. This framework consists of
sets of pitch accents associated with prominent syllables, and boundary tones, which
describe events at the boundaries of prosodic phrases. Each of these tones and accents
can be characterized as being either “high” or “low” or a combination of these two.
An abstract representation such as this is advantageous, because it separates this
phonological component of intonation from more specific segmental details involved
in producing the actual F; contour.

Based on this intonation theory, an algorithm for converting the above men-
tioned phonological description into a function of Fy versus time is used [58]. Target
values associated with pitch accents are superimposed on a downward-sloping func-
tion. This function models declination, the general tendency for a talker’s pitch range
to narrow and drift downward over the course of a phrase. Interpolation between these
targets is then performed to create the pitch contour.

Various other methods for determining the Fj contour also exist. Among these
are models that represent the F; contour as the response of a lowpass filter to an input
of step functions and impulses corresponding to linguistic events in the utterance
[6, 59], and methods employing dynamical control system models that can be trained

from a marked speech corpus [60].

Segmental duration prediction The duration of segmental units also contributes

to the perception of rhythm in speech, an important cue for naturalness. There is con-

4 Phonology is the branch of linguistics that deals with abstract entities such as the “accents” and
“tones” described here. In contrast, phonetics deals with the manifestation of these abstract entities
as audible cues in speech.
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siderable debate over just which segmental unit is best suited to measuring duration.
The phone, or phonetic realization of a particular phoneme, is convenient for various
reasons, but the syllable or other units [61] are easier to relate to other phonological
theories. Again, both rule-based and statistical-training methods exist [62], both of
which depend on factors such as phonetic identity and context, speaking rate and

style, stress, and prominence.

2.2.3 Waveform Synthesis

The third block of Figure 2.4 is the focus of the research described in this thesis. At the
“back-end” of a text-to-speech system is a module that converts the aforementioned
linguistic representation to an actual speech waveform. There are currently three basic
categories of methods for accomplishing this: articulation-based synthesis, formant

5

synthesis, and concatenation of recorded speech segments.® An overview of these

three waveform synthesis methods is given in this section.

Articulation-based methods One reasonable approach to synthesizing a speech
waveform is to model the physics of the speech production mechanism. If the si-
multaneous motions of the diaphragm, glottal folds, vocal tract cavities, and lips
could be accurately simulated, then realistic speech would be produced by such a
model. Although many researchers have developed speech synthesis algorithms based
on simplifications of such a model (see for example [63, 64, 65, 66]), the task of produc-
ing natural-sounding speech from articulatory rules is extremely complex. Scientific
knowledge of the intricate behavior and properties of the vocal tract remains rudi-
mentary. Many researchers are currently developing more accurate models of speech

production [67, 68] that are increasing understanding of the articulatory process.

5The rightmost block of Figure 2.4 is specific to the concatenation case.
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Formant synthesis One principle that has formed the basis of much digital speech
processing work over the past 25 years has been the “source/filter” model of speech
production proposed by Fant [7]. In this model, the speech waveform is modeled as
the result of passing an excitation source through a slowly-varying resonant tube-
like structure (the vocal tract). The “transfer function” of the resonant vocal tract
structure is changed by motion of the articulators, and can be described quite well
by a set of three to five resonances, or formants.

In formant synthesis, pioneered by Klatt [8], Holmes [69], and others, synthesis
is achieved by applying a set of heuristic rules for controlling the frequencies and
amplitudes of these formants and the characteristics of the excitation source. Al-
though isolated phonemic units can be characterized almost solely by their formant
frequencies and motions, the formant locations in continuous natural speech are heav-
ily influenced by context. Because of this fact, the rules necessary to control a formant
synthesizer are rather complex.

Although careful refinements of formant synthesis have resulted in quite intel-
ligible synthetic speech, the output speech lacks many of the subtle qualities that
listeners perceive as “naturalness.” With careful manipulation of model parameter
trajectories, it is possible to “copy” recordings of speech quite well using a formant
synthesizer, but specifying general rules for these trajectories that result in very

natural-sounding speech is a difficult problem.

Concatenation The shortcomings of the previously mentioned synthesis methods
arise because they each rely on the integrity of a simplified mathematical model of
speech production. Many perceptually significant, but ill-understood, properties of
the speech waveform are not present in the result. One way to sidestep these short-
comings is to concatenate short pieces of digitally recorded speech to form larger
utterances. The synthesis algorithms developed in this research utilize this concate-

nation strategy. The next section describes in greater detail some issues associated
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with the concatenation method.

2.2.4 Concatenation-Based Synthesis

Except in some very limited applications, it is not appropriate to piece together indi-
vidual words to form new sentences in a text-to-speech system. The set of necessary
words would be enormous, and a system of this sort would have no way to pronounce
names or new words that were not already present in its archives. Instead, subword-
sized units must be concatenated to form words and longer utterances. Phonemes,
the set of basic units that comprise the sounds of a language, are an attractive set to
consider. There are approximately 44 phonemes in English; these could in theory be
concatenated to produce any word. However, the manifestation of a given phoneme is
not invariant with context; coarticulation effects between adjacent phonemes change
their acoustic representation significantly. As an alternative to the phoneme as a
basic synthesis unit, researchers have proposed using other subword units such as the
diphone, the acoustic segment beginning at the center of one phoneme and ending at
the center of another [70], or the demisyllable, a unit derived from the syllable [71].
Given an inventory of such subword synthesis units, synthesis is performed by choos-

ing the proper recorded subword units and concatenating them to generate speech.

Inventory structure/unit selection

Although fixed sets of diphones and demisyllables can produce reasonably intelligible
synthetic speech, better results can be obtained when more general methods of unit
selection are employed. Many of these methods use a large corpus of annotated single-
speaker speech as the inventory, instead of a hand-edited library of single units. This
approach allows for more choice in unit selection, and also eliminates the tedious
process of diphone segmentation by hand.

The goal in such systems is to find subword speech units that are taken from a

context most closely matched to the context of the unit in the synthesized utterance.
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This process will, in theory, choose a unit that most closely represents the coarticula-
tory effects of the neighboring speech segments. One example of a method for orga-
nizing and classifying such a database is “context-oriented clustering” (COC) [72]. In
this method, each set of phones in an annotated database is subdivided into clusters
by a recursive binary splitting operation. (For example, the phoneme /a/is separated
into units preceded by /b/ and units not preceded by /b/.) At each step of the pro-
cedure, an intracluster spectral variance measure is used to decide which cluster to
split. This process is continued until all clusters have a sufficiently small variance or
contain a minimum number of units. An extension of this procedure, called “multi-
layer COC,” has also been proposed [73, 74]. In this algorithm, stress and syntactic
boundary information in the database is also used in the splitting operation.

Other approaches incorporate not only phonemic and phonological annotation,
but also acoustic characteristics of individual units. These methods are also able to
handle gracefully situations where an exact phonemic context match is not available.
In [75, 76, 77], tree splitting operations are performed to select units based on cepstral
distance, rate of change of cepstra, and other measures. In [78, 79, 80, 81], this set
of features is expanded to include prosodic characteristics such as F{, duration, and
energy as well. In this work, the problem is set up within the context of dynamic
programming, with each unit selected having a “unit distortion” and a “continuity
distortion.” The selection process then consists of selecting a path through a lattice
of available units such that a combination of transition and node cost functions is

minimized.

Prosodic modification

Once the synthesis units have been chosen, independent control of energy, fundamen-
tal frequency and time-scale evolution is required to create a synthetic utterance with
the correct prosodic information. A review of speech modification methods that have

been applied to TTS follows.
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Time-domain methods Among the simplest prosodic modification methods is
time-domain pitch-synchronous overlap-add synthesis (TD-PSOLA), originally devel-
oped by researchers at the Centre National d’Etudes des Télécommunications (CNET)
in France [11, 10]. This method involves a windowing of the speech signal s[n| using
time-domain windows centered on successive pitch pulses. This produces a sequence
of short-time signals

sk[n] = h[n]s[n — kT,],

where h[n] is an analysis window of length pTo. The factor y is typically 2, meaning
the window spans two pitch pulses in the waveform. Since the analysis window
is positioned on successive pitch pulses, the overlap between successive windows is
proportional to u. Because of the pitch-synchronous nature of the analysis, accurate
pitch pulse marks must be found for each pitch period. This usually involves an
automatic glottal epoch detection procedure with some hand-correction. TD-PSOLA
synthesis is accomplished by positioning the short-time signals si[n] along the time
axis with some overlap, and then summing.

Time-scale modification using time-domain PSOLA is achieved by deleting or
replicating short time signals prior to the overlap-add procedure. This preserves
the formant structure of the waveform, while changing the time-scale evolution of
the utterance, and works fairly well for stationary voiced speech signals. However,
when the time-scale of unvoiced speech is expanded by this method, periodicities are
introduced into the waveform by the replication of individual short-time segments,
and these periodicities are manifested as a “tonal” artifact.

Pitch modification is accomplished by simply repositioning the short-time seg-
ments relative to each other prior to overlap-add, as shown in Figure 2.7. In ideal
conditions, this preserves the formant structure, while altering the fundamental fre-
quency of the signal. The window length factor u is very critical in this process. If
1 is large, reverberant artifacts occur, since the pitch periods within the short-time

signal cannot be realigned (equivalently, spectral lines appear in the Fourier trans-
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form of sg[n]). As p is made small, the window shape has a greater influence on
the individual pitch period waveform shapes, leading to broadening of the formants.
Also, the position of the waveform within the analysis window becomes critical. A
detailed analysis of these effects is given in [11].

The biggest advantage of time-domain PSOLA, of course, is its simplicity. Syn-
thesis can be implemented with a complexity of approximately seven operations per
sample [82], making it well-suited to real-time applications [83, 84, 85].

This description of PSOLA is reminiscent of the time-domain analysis of pitch
modification in the ABS/OLA sinusoidal model given in Section 3.1.3. Comparisons
can be drawn between PSOLA and phasor interpolation in the ABS/OLA model,
and it is clear that some of the artifacts produced by these methods will be similar
to each other. However, the fact that no explicit model for the signal exists in the
PSOLA case implies that it is much more difficult to develop methods for mitigating

these artifacts.

Time-domain source/filter models The source/filter model used in standard
LPC vocoders has been used as a prosodic modification framework for many years.
Early systems used vocal tract parameters taken from natural speech along with a
synthetic pulse excitation [86, 12]. This simple representation makes prosodic modi-
fications almost trivial, since the excitation sequence is synthetically generated, but
the speech quality is similar to that of a formant synthesizer.

Extensions of this technique instead use modification of the LP residual to
achieve greater naturalness in the modified speech. For instance, the time-domain
PSOLA technique described above can be applied to the residual itself (LP-PSOLA) [11,
87]. A model that provides for slightly more efficient storage is the use of a “multi-
pulse” representation of the residual [88, 89].

These techniques have the advantage of decoupling the formant structure and

pitch information, making the algorithm somewhat less sensitive to window size and
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alignment than PSOLA. A long window in LP parameter estimation can be used to
reduce the window effects on the formants, and a shorter window can be used to avoid

reverberation in the pitch modification.

Frequency domain methods Another alternative to PSOLA-based pitch shifting
of the LP residual is frequency domain modification. In [90, 87|, a technique for using
the FFT to modify pitch is presented (called FD-PSOLA). An FFT of the windowed
speech segment is computed, from which the formant structure is removed via spectral
flattening. Rescaling of the frequency axis is then used to change the position of the
residual signal harmonics, and an inverse FFT is used to transform the signal to the
time domain after reintroducing the spectral envelope shape. This is equivalent to
sampling rate conversion of the residual signal. Drawbacks of this approach include
reduction in the signal bandwidth during pitch lowering and migration of noise across
frequency bands.

A few authors have recently proposed direct frequency-domain synthesis of
the speech waveform using sinusoidal models [91, 92, 93], including the “Multiband
Excitation” (MBE) model proposed by Griffin and Lim [31] and the sinusoidal model
developed by McAulay and Quatieri. The method presented in Chapter 4 falls into
this category.

Unit concatenation issues

An added complication in the TTS application is the fact that slightly dissimilar
speech units must be concatenated as well as modified.

As shown in Figure 2.8 (within the context of PSOLA), this can result in
several types of mismatches at the concatenation point. Linear phase mismatches in
the signal cause misalignments of the pitch pulses in voiced speech (panel (a)), which
can be perceived as a “garbled” speech quality by the listener. Gross differences in

the phase distributions of the signals can result in a variation of waveform shape
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across the boundary, but this is less perceptible. When the fundamental frequency of
one inventory segment is much higher than its neighbor at the concatenation point,
differences in waveform shape are often apparent, as shown in panel (b). These can
be attributed to the formant estimate accuracy inherent to the method (TD-PSOLA
is poor in this regard, as can be seen in Figure 2.8). Finally, spectral tilt and formant
frequencies and bandwidths can differ across the boundary, resulting in a perceived
discontinuity of vowel quality (panel (c)). These mismatch artifacts are universal
aspects of the concatenation problem, but their manifestation may depend to some
degree on the method of prosodic modification being used.

In [94, 95], an algorithm that reduces many of the artifacts of concatenation is
proposed as a preprocessing step before application of TD-PSOLA. This algorithm
involves an off-line resynthesis of the speech unit inventory using the MBE model.
Upon resynthesis, the speech is forced to have a constant pitch value. This implies
that (7) pitch marking is trivial, and (i7) interpolation of spectral shape across the
unit join boundaries can be accomplished by simple time-domain interpolation of the
units. This algorithm does achieve its desired goal of making concatenation simpler,
but produces speech with the well-known “buzzy” artifacts associated with the MBE
vocoder.

In Chapter 4, the ABS/OLA sinusoidal model is applied to address the research

problems associated with concatenation.
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original

pitch raised by 25%

Figure 2.7: Pitch modification via PSOLA: top: original voiced speech; middle: pitch
lowered by 25%; bottom: pitch raised by 25%
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CHAPTER 3

AN IMPROVED SINUSOIDAL MODEL

3.1 Overlap-Add Sinusoidal Speech Modification

As described in the previous chapter, the Analysis-by-Synthesis/Overlap-Add
(ABS/OLA) sinusoidal model is capable of high-quality prosodic modification and
resynthesis of speech and music. However, the results obtained with this model are
not without artifacts that merit investigation.

In this section, the pitch modification and time-scale modification algorithms
in the original ABS/OLA work are described and analyzed in detail. This analysis
serves to point out the causes of some synthesis artifacts, and it motivates several
extensions of the model described later in the section. These improvements focus on
(¢) removal of undesirable modulations caused by pitch modification, (#4) mitigation
of “tonal noise” artifacts in unvoiced speech modification, and (7i¢) improvement of

pitch pulse onset time estimation in the model.

3.1.1 Frequency-Scale and Time-Scale Modification

The overlap-add synthesis of the kth frame of a speech signal z[n] using the ABS/OLA

model can be expressed as follows:

zln + kN, = ofn + kN, (w,[n]s*[n] + w,ln — N,]s* [n — N,]) (3.1)



Synthesis frameé

Figure 3.1: Overlap-add synthesis of a single frame using the ABS/OLA model.

where o[n] is the time-varying gain contour mentioned in Section 2.1.2; w;[n] is the
synthesis window, and s¥[n] and s*1[n] are the “synthetic contributions” generated
from analysis parameters of analysis frames k£ and k+1, respectively. This equation is
depicted schematically in Figure 3.1. Each synthetic contribution s*[n] can be written
as a sum of quasi-harmonic, constant-frequency sinusoids

J[k]

snl =Y A? cos ((jw(’f + Af)n + ¢f) ; (3.2)

§=0
where w{ is the fundamental frequency estimate for the frame, A%, ¢% are the jth com-
ponent amplitudes and phases, respectively, and Af is the jth component differential
frequency.

A straightforward approach for time-scale modification with such a model is
simply to scale the length of each synthesis frame by a factor p, such that the new
length of synthesis frame & is pp N (p > 1 implies slower speech). Furthermore, the
time-evolution of the gain envelope o[n| must also be scaled to keep it synchronous
with the sinusoidal frames. Frequency-scale modification can be performed by simply

scaling each component’s frequency in Equation (3.2) by a factor 8 (8 > 1 corre-
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sponds to a higher frequency). Alternatively, pitch modification can be performed by
removing spectral shape characteristics due to vocal tract formants, frequency-scaling
this “residual” model, and then reintroducing this resonant structure, as described
in Sections 2.1.1 and 2.1.2. It is also important to note that modification of the
frequency- and time-scale of the sinusoidal components changes the locations of pitch
pulses in each frame. Because the overlap-add procedure relies on the coherent over-
lap of these pulses between adjacent frames, a time shift 6* must be imparted to
realign the frames after modification. Derivation of an expression for this shift is
given in Section 4.5, as is a graphical illustration of the problem.

Unfortunately, the modification scheme described above leads to poor results
for all but very small modification factors. This is mainly due to the fact that the si-
nusoidal components are not, in general, harmonically-related to each other. Because
the frequencies are not multiples of a fundamental, phase offsets between components
do not repeat periodically, and the “pulse-like” time-domain structure of a typical
voiced speech signal is not maintained, as shown in Figure 3.2(b). This time-varying
phase evolution is perceived by the listener as a “reverberant” or “rough” quality.

In [24], a method for overcoming this problem is developed. The solution
involves viewing each quasi-harmonic component as the product of a harmonic term
and a slowly-varying phase modulation term as follows:

J[K]
sk[n] _ %6{2A;cej((lw’g+Af)n+¢f)}

1=0

J[K]
= Re {Z (ejAl’“n) (A;cej(lw’gn-kd)f))} . (33)

1=0
By expanding or contracting the time-scale of this modulating term, the phase offsets
at the ends of the modified frame can be made to agree with those at the ends of
the original unmodified frame, and the problem of phase coherence breakdown is

eliminated. Figure 3.2 shows this effect. Thus the synthesis Equations (3.1) and (3.2)

40



(a) Original signal
T

(b) Time-scale expanded by factor of 2
T T T

(c) Time-scale expanded by factor of 2
T T T

| | | | | | |
-300 -200 -100 0 100 200 300
time (samples)

Figure 3.2: Phase coherence breakdown due to differential frequency terms in quasihar-
monic model: (a)Original speech; (b) Result after time-scale modification without scaling
of differential frequency terms; (c) Result after time-scaling of differential frequency terms.
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for a modified signal Z[n| become

Tn+ Ny =0 [% + kNS] {w [%] s*[n] +w [% - NS] sFHp — pst]} (3.4)
where
Jlk] Akn
s[n] = ZAf cOS (jﬂkw(’f(n +68)+ L4 </5f>
=0 Pk
J[k] Alﬁ'ln
s n] = > A% cos (jﬂkﬂw(’)““(n + 6 + JT + ¢f+1>
=0 k

for 0 < n < p Ny, where Ny is the beginning of the current synthesis frame (IV, =
Ny 3% pi)-

An expression for the frequency of a single component can be written as
W = jPBwo+ Aj/p. (3.5)

Modifying the differential frequency terms in this manner has the effect of making the
quasi-harmonic set of sinusoidal components more harmonic in structure when the
time scale of the frame is expanded, becoming a harmonic series in the limit. This
results in very good quality time-scale modification of voiced speech for a wide range
of modification scales.

However, this “harmonization” strategy becomes a detriment to the modified
speech quality when applied to time-scale expansion of unvoiced speech. Reducing
the magnitude of the differential frequency terms has the effect of making the resyn-
thesized noise more “tonal” in nature, since the components become more nearly
harmonically related.

As mentioned by McAulay and Quatieri in [28] and other papers, the key to
the ability of the sinusoidal model to represent unvoiced speech lies in the pseudo-
random variation of component amplitudes, phases, and frequencies from frame to
frame. This important variation is reduced in this case for two reasons: (i) The time
scale is being expanded, meaning that the component frequencies do not change as

rapidly as in the unmodified model; and (i) fundamental frequency contours in the
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model are usually smoothed over several adjacent frames to improve modified voiced
speech quality, causing the nearly harmonic tones to tend to persist even longer. This
tonal quality of unvoiced speech after time-scale expansion is a classic problem that
has been mentioned by several authors [34, 38, 46, 16, 17, 47]. The presence of this
artifact is addressed by a proposed extension to the ABS/OLA model described in
Section 3.3.

3.1.2 Excitation Modification

As mentioned above, pitch modification, as opposed to frequency modification, can
be performed by maintaining the speech formant structure while changing the sinu-
soidal component frequencies. This can be accomplished by simply dividing out the
amplitude and subtracting the phases of a spectral envelope system function estimate
from the sinusoidal parameters for the frame. What remains is a sinusoidal model for
a signal representing the glottal excitation input to the vocal tract.

Simply frequency-scaling the sinusoidal excitation components for the frame,
although an intuitive solution, can cause problems. These problems arise because the
bandwidth of the modeled signal is changed by frequency scaling—high frequency
energy is lost in pitch lowering, for example. Also, noisy regions in the original spec-
trum can possibly be moved to lie under formant peaks, causing other objectionable
artifacts. The solution proposed by George and Smith [24, 25] is instead to interpo-
late and resample the excitation spectrum to achieve pitch modification in a process
termed “phasor interpolation.”

Given the excitation amplitudes b; and phases 6, for the frame, interpolation
from the sinusoidal line spectrum to a smooth envelope E(w) is computed by

J
E(w) =Y be!I(w — lwy). (3.6)
1=0
Since this is a complex-valued interpolation, 27 phase discontinuities between adja-

cent sinusoids can cause undesirable effects. For this reason, it is necessary to have
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an unwrapped phase response. A reasonable approach to this problem is simply to
remove the linear phase component due to the pitch pulse onset time shift described
in Section 2.1.1, which causes the phases to become roughly centered around 0 for
voiced speech signals, as shown in Figure 3.3. The interpolation function I(w) pro-
posed in [24, 25] is

Iw) = cos®(mw/2wp), |w| < wp | (3.7)

0, otherwise

which has the desirable property that 7(0) = 1 and I(lwy) = 0 for [ # 0. After inter-
polation, the function E(w) is then resampled at the new pitch harmonic locations
to generate the pitch-shifted set of sinusoidal components. The set of differential
frequencies A, is interpolated and resampled by a similar method.

The phasor interpolation method works well in many cases, but still produces
certain artifacts in the resynthesized speech. In particular, a very “pulsy” structure
is imparted to the excitation when the pitch is lowered. Also, when pitch lowering
is applied to unvoiced speech, an annoying “choppy” quality arises, due to time-
domain modulations of the noise amplitude. This artifact also becomes audible in
pitch lowering of breathy or partially devoiced speech.! When pitch raising is applied
to unvoiced speech, tonal artifacts similar to those mentioned previously become very

apparent.

3.1.3 Time-Domain Interpretation

The next several paragraphs provide an analysis of the phasor interpolation scheme
described above, with the goal of finding the cause of the aforementioned artifacts.
This analysis motivates a set of improvements to the model, described later in this

section.

! Devoicing is the manifestation of a typically voiced phoneme (e.g., a vowel) as a predominantly
W

unvoiced sound, often occuring in unstressed syllables or function words such as “the” or “a”—a
phonological process referred to as reduction.
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Figure 3.3: Unwrapping phases via removal of linear phase shift: top: Sinusoidal compo-
nent amplitudes; middle: component phases; bottom: component phases after removal of
pitch pulse onset time linear phase shift. (Phases above 5 kHz are considered perceptually
insignificant.)
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Time domain equivalent of cos”2 window

-3To -2To -To 0 To 2To 3To

Figure 3.4: Time-domain equivalent of phasor interpolation window. Note that shifts of
window sum to unity.

Equation (3.6) above can be rewritten as a convolution
E(w) = S(w)*I(w), (3.8)

where

L
S(w) =" b’ (w — lwy),
1=0
and we have assumed L harmonically-related sinusoids for simplicity. This convolu-

tion can be written in the time domain as the product
e[n] = s[nli[n], (3.9)

where s[n] is a (slightly dispersed) pitch pulse train and i[n] is the inverse Fourier
transform of the interpolation function I(w). For the particular function in Equa-

tion (3.7), the following expression for i[n] can be found

1 [sin(wg(n —Tp/2))  sin(we(n + Tp/2))  sin(wgn)

= 2w —To/2) 2(n + Ty/2) n |

(3.10)

where Ty = 27 /wy. As seen in Figure 3.4, this window function has zero crossings
at multiples of T, and sums to unity when superimposed at shifts of k7. Since
the removal of the pitch pulse onset phase term tends to move excitation pulses to

the frame center, Equation (3.9) results in the extraction of a single prototype pulse
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from s[n] via windowing by ¢[n]. This pulse is completely described by the smoothed
spectrum E(w).
Resampling E(w) at multiples of a new fundamental frequency 27 /T can be

represented by

Sw =Y Ews @-z%”), (3.11)

l=— 0

which can be written in the time-domain as
§[n] = e[n] * p[n], (3.12)

where

pln] =1 i 8[n — Tyk].

k=—o0

Thus, this resampling operation results in periodic replication of the prototype pulse
at the new fundamental period Ty. This process is depicted in Figure 3.5 for the case
of a voiced speech input. The complex interpolation and resampling operation is
followed by reintroduction of the differential frequency terms from Equation (3.3).
In keeping with the argument in Section 3.1.1, these differential frequencies can be
interpreted as slowly varying phase modulation terms that serve to modify the wave-
form shape slightly across the duration of the synthesis frame. In Figure 3.5, it can
be noted that the waveform shape changes slightly across the frame duration due to
these differential frequency terms.

As seen in Figure 3.5, the phasor interpolation is capable of performing a rea-
sonable modification of the pitch of the speech signal. However, as mentioned above,
an amplitude modulation occurs during pitch lowering (3 < 1), imparting a choppy
sound to unvoiced speech and a pulsy or buzzy sound to voiced speech. The cause of
these artifacts can be seen in the time-domain interpretation of phasor interpolation
described above. As shown in Figure 3.4, the time-domain versions of the inter-
polation window i[n] sum to unity when the spectrum is resampled at the original
fundamental frequency wy = 27 /T,. However, when a modified fundamental fre-

quency wg = Bwy is used, the superposition of these windows does not sum to 1. The
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Figure 3.5: Phasor interpolation applied to voiced speech.
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Figure 3.6: Phasor interpolation applied to unvoiced speech.
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undesirable effect of this on unvoiced speech is illustrated in Figure 3.6. The time-
domain equivalent of phasor interpolation causes a modulation of the pitch-modified
unvoiced speech when (3 < 1). This artifact is perceived as a “choppy” sound by the
listener. Furthermore, this modulation produces the “buzzy” or “pulsy” structure of
pitch-lowered voiced speech, since the amplitude of the residual excitation signal lying

between the pulses is made unnaturally small by the window modulation effects.

3.2 Compensation for Modulation Effects

The time-domain analysis of phasor interpolation given above suggests a remedy for
this undesired modulation effect. An expression for the modulation can be derived,
and compensation for this effect can be made.

The effective amplitude modulation of the output signal in a frame can be
written as

c[n] = i[n]  p[n], (3.13)

where p[n| is the pulse train given by

pln] =Ty Z5n——k

k=—00 ﬁ
This convolution can be rewritten in the frequency domain as
_ ﬂ — Jjwn
c[n] = Dy w) Y 0(w—kBwy) e dw, (3.14)
mJ- k=—00

where wy = 27 /Tp. Since I(w) is defined to be nonzero over |w| < wy, this simplifies
to
K

cn] = B Y I(kBuw)e P or

k=—K

= 5 1(o)+2f;1(kﬂwo)cos(wwon) , (3.15)

k=1

with K = [%J This is depicted schematically in Figure 3.7. As (3 is reduced, more
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Figure 3.7: Tllustration of modulation components introduced by phasor interpolation.
Depending on the value of 3, one or more components of the pulse train spectrum affect
the pitch modified signal.

and more components of the pulse train spectrum are added to the modulation signal
¢[n]. It should also be noted that the case where 5 > 1 corresponds only to a constant
gain being applied to the signal frame.

Given this expression for the modulation envelope c[n], the effects of this mod-
ulation can be reversed by simply dividing each sample z[n] in the pitch-modified
frame by c[n], i.e.,

_ z[n]

] = o (3.16)

As shown in Figure 3.8, this has the desired effect of restoring the time envelope of
the modified signal. However, a potential problem arises—since i[n] contains zeros at
multiples of Tj, some values of ¢[n] will approach zero as § approaches 0.5 or lower,
causing the method to become unstable.

To sidestep this problem, a limit can be placed on the minimum of ¢[n]. When

B > 0.5, Equation (3.15) can be rewritten as
c[n] = go + g1 cos(wgn), (3.17)

where

Jgo = 51(0)
g1 = 2BI(Bwo).
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Figure 3.8: Modulation compensation applied to unvoiced speech.
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It can be shown that, for the choice of window I(w) given in Equation (3.7), the gain

1/c[n] will be limited to a value Cyq, by setting

1+1 Cmaz
o = § YO
1-1 Cmam
g = B + (3.18)
whenever
B —2Bcos*(B1/2) > 1/Cras- (3.19)

Figure 3.9 shows the effect of this limiting on ¢[n] and 1/¢[n] as § is varied from 0.75
to 0.50.

For the case where 3 < 0.5, there will be multiple terms in the expression for
c[n], and the limiting method above will no longer be applicable. The instability in
this case can be simply avoided by introducing a bias factor 1/C},,, into the division
in Equation (3.16) and taking the absolute value of c[n]:

c[n]| + 1/Cmaz'

Zn] = (3.20)

However, it is rare that pitch modifications of § < 0.5 (lowering by an octave) are
attempted in practical applications.

The effect of this compensation algorithm on voiced speech should also be con-
sidered. In Figure 3.10, an example of this case is presented. It can be seen that

’ since

division by c[n] during voiced speech tends to make the waveform less “pulsy,
a gain larger than unity is applied between the pitch pulses. This can be interpreted
in the frequency domain as a sharpening of the formants that narrows their band-
width and causes these resonances to “ring” more after excitation by a pitch pulse,
as seen in Figures 3.10 and 3.11.

This effect alone is desirable — the final output waveform maintains the shape of
the original without the pulsy artifact. However, a slight reverberance is also imparted

to the voiced speech by this method. This effect may arise because the excitation

signal produced by phasor interpolation exhibits some strange phase behavior between
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Figure 3.10: Modulation compensation applied to voiced speech.
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Figure 3.11: Effects of modulation compensation on the first 2 formants of a vowel sound.
The compensation algorithm results in a slight reduction of formant bandwidths.

pitch pulses. By close examination of Figure 3.10, it can be seen that the ringing of
the formant waveforms becomes less regular just before the onset of a new pulse.
From the time domain framework developed above, this artifact can also be viewed

as a phase distortion caused by the overlapping pitch period windows.

3.3 Phase Dithering

For convenience, voiced and unvoiced speech are represented in the same manner by
the sinusoidal model. A commonly-cited problem in sinusoidal model-based speech
modification algorithms is the existence of so-called “tonal” artifacts in unvoiced
speech after time-scale expansion or raising of the pitch. One method for circum-
venting these artifacts is to use an entirely different model for unvoiced portions
of the speech signal. As described in Section 2.1.3, researchers have proposed har-
monic/stochastic decompositions of the signal for coding [31, 35] or modification [46,
33]. Most of these are based on representing the periodic portion of the signal by a si-

nusoidal model and then modeling the residual signal as the output of a time-varying
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filter excited by white noise. Although decompositions such as these can mitigate
some types of artifacts, it has been noted that the output signal often suffers from
a lack of “perceptual fusion” of the two signal components [44]. This results in the
sinusoidal and noise parts being perceived as two distinct sources by the listener,
rather than as a single, unified source.

The algorithm presented in this section (and in [96]) is an extension of the
Analysis-by-Synthesis/Overlap-Add (ABS/OLA) sinusoidal model. In this extension,
noise-like segments of the signal are represented by sinusoidal components, but the
phases of these sinusoids are manipulated to preserve the “perceptual randomness”
of the signal after modification — that is, to remove the perception of tonality in the
signal. A perceptual motivation for this algorithm is given, as is a frequency-domain
interpretation of its resulting effect on the signal. Finally, the results of a subjective

comparison test evaluating the effectiveness of the algorithm are also presented.

3.3.1 Phase Randomization Synthesis Algorithm

Perceptual motivation Empirically, it has been found that the ABS/OLA model
is capable of faithfully reproducing both voiced and unvoiced sounds when a frame
update period of 10 milliseconds or less is used in synthesis. However, when time-scale
expansion and/or pitch raising operations are performed, the unvoiced segments take
on the above-mentioned “tonal” character.

This role of time-scale expansion in causing this artifact can be explained in
terms of current theories of pitch perception. One theory suggests that the brain
assigns the perceived pitch of a tone complex based on the intervals between peaks
in the fine time structure of the signal at various points on the basilar membrane?,
integrated over a time interval on the order of several milliseconds [97]. Thus, any
arbitrary set of sinusoidal components with constant amplitude and frequency (e.g.,

a time-expanded synthesis frame) will produce regular patterns at various places

2The basilar membrane behaves roughly as a filter bank.
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across the basilar membrane, and the brain will recognize prominent periodicities in
these patterns. When the the sinusoidal components remain stationary for a duration
significantly large with respect to the integration time of this human pitch detection
mechanism, the resynthesized speech signal begins to take on a tonal character.

It has also been observed that this tonal artifact is exacerbated by pitch-raising
modification. In [28], McAulay and Quatieri justify the use of the sinusoidal represen-
tation for unvoiced speech by an argument based on the Karhunen-Loeve expansion
for noise-like signals. They conclude that this representation for unvoiced speech is
valid when the sinusoidal components are spaced “closely enough” to each other in
frequency that the ensemble power spectral density is relatively smooth as a function
of frequency. When the fundamental frequency of the sinusoidal components is raised
in a given frame, the components become more widely spaced in frequency, leaving a
spectral shape that is less smooth and more peaked as the pitch is raised. Thus, the
model for the noise becomes less mathematically representative of the signal char-
acteristics. From a human perception viewpoint, the tone complex representing the
noise-like signal becomes more sparse, and spectral lines become more prominent.
This effect tends to worsen the perceived tonal noise artifact.

The top and middle panels of Figure 3.14 show the periodogram of an 80
ms segment of unvoiced speech signal (phoneme /s/) before and after time-scale
expansion and pitch raising. Note that the spectrum of the modified signal, which
possesses a significant tonal noise artifact, distinctly exhibits the presence of these
tonal components.

The above perceptual arguments suggest that the perception of randomness
in the modified signal can be maintained by (7) disrupting long-term periodicities in
the time waveform over the course of the synthesis frame, and (i4) maintaining the
smoothness of the original signal spectrum. The next section presents a method that

is capable of achieving these objectives.
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Figure 3.12: Subframe overlap-add synthesis.

Overlap-add phase dithering It has been found experimentally that the above
goals can be realized by modulating the phase of the sinusoidal model components in
each frame of unvoiced speech. The nominal frequency of each component is kept the
same, but the time structure of combined sets of these components along the basilar
membrane no longer exhibits the periodicities originally detectable by the listener.
One simple way to implement such an idea within the context of an overlap-add
model is to subdivide each time-scale expanded frame, as shown in Figure 3.12, and
randomize (or “dither”) the phase offsets between components in each subframe.

Referring to Equation (2.13), each N,-sample frame can be divided into sub-
frames of length N, where Ny, < N;. It is possible to resynthesize a signal identical
to the original frame sg[n] by

00 -1
sp[n] = m;w ws[n — MmNy ; Ay cos(win + ¢pm), (3.21)

where w;[n] is a window function that is nonzero over [—Ngyp, Nsys], and the frame
k notation has been suppressed. Equation (3.21) and the original synthesis Equa-
tion (2.13) can be made equal by letting ¢;,, = ¢F for all m, where ¢ is the original
phase estimate for the frame in Equation (2.13). (In practice, the limits of the sum
on m can be made finite, since sx[n] is multiplied by a finite time support window.)

Alternatively, the phase offsets between sinusoidal components in each subframe
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can be varied by adding a random offset V; v, to each ¢, term:

¢l,m = ¢;€ + Vi ’l/Jl,m (322)

where 1, is a uniform random variable over [—m, 7] and V] is a weighting factor
that takes on values in [0, 1]. This suggests the possibility of using a “soft-decision”
scaling of V; that depends on the nature of the input signal over each frame; the
random variable v, can be weighted by the factor V; € [0,1] to produce varying
degrees of phase randomization, or equivalently, disruption of the signal periodicities.
Thus, when V; = 0 for all /, the synthetic contribution sg[n] will be resynthesized in
its original form, but when V; = 1, the phase offsets will be completely random from
subframe to subframe. This scaling can also be varied across frequency (the [ index)
to introduce frequency-dependent phase randomization.

Although the previous equations have been presented as time-domain summa-
tions of cosines, s[n| can be computed much more efficiently using the inverse FFT,
as mentioned in Section 2.1.2. This idea can be easily extended to the computation of
Equation (3.21) by using a sequence of N;/Ny,, IFFT’s and an overlap-add procedure

analogous to that used in the original model [25].3

Frequency-domain interpretation Interpreting the above algorithm in the fre-
quency domain provides several interesting insights into its behavior. Specifically, the
effect on each component can be described as a frequency modulation that spreads
the effective bandwidth of each component, smoothing the signal spectrum.
Rewriting the subframe overlap-add equation (3.21) in terms of complex signals

and substituting Equation (3.22), we obtain

00 L-1
sk[n] = Re { > wsn — mNg) > Alej(“”"w’“/“l”’m)} . (3.23)

3The use of a shorter IFFT for the subframes is desirable from the standpoint of computational
complexity, but results in a slight loss of accuracy in Equation (3.21), due to quantization of the
frequencies to FFT bin values.
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This equation can be rewritten to incorporate a set of functions b;[n| that are fre-

quency modulated by respective sinusoidal signal components,

L-1
sk[n] = Re {Z b, [n]Alej(“’l"+¢l)} (3.24)
1=0
where
bin] = Z wy[n — MNgy)e?1¥m,

In this equation, the term e/V1%.m can be viewed as a complex-valued random process
with a sampling rate of 1/Ny,,, and wy[n] as an interpolation filter that performs a
conversion to the sampling rate of the speech signal. The transform of b;[n| can be

written as

Bl(ejw _ er Z eI (mwiNsyp— me) (3_25)

m=—0o0

where W,(e’?) is the Fourier transform of the subframe synthesis window.

If V} is set to 0 for all [, then the summation will equal a pulse train whose
pulses coincide with the nulls of W,(e’?), resulting in B;(e’*) = 6(w); the sinusoidal
component is left unmodified. However, if V; > 0, then the elements of the frequency-
domain pulse train will not coincide with the window transform nulls, but will instead
be weighted by nonzero samples of the window transform. This means that, as
V; is increased, B;(e’“) will on average assume the shape of the window transform
W,(e’*), as shown in Figure 3.13. Thus, the bandwidth of B;(e’“) will be increased
by making the subframe durations shorter (i.e., decreasing Ny,), since this will widen
the mainlobe of the window transform.

The increase in bandwidth of each sinusoidal component results in a smoothing
of the resynthesized signal spectrum. This is demonstrated in Figure 3.14, where the
time-scale and pitch modified signal spectrum is shown with and without the phase

randomization algorithm applied.

Other work The use of a modulating function such as b;[n] to preserve randomness

in the sinusoidal representation of noise is reminiscent of ideas in [35], where “nar-
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Figure 3.13: Illustration of effect of phase randomization on frequency domain sinusoidal
basis functions as Vj is varied in Equation (3.22) (averaged over 30 trials). Value of V} is
given in top right corner of each plot. Note that the bandwidth of the stochastic basis
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Figure 3.14: Periodogram (50 ms rectangular window) of 80 ms unvoiced speech segment.
(top) original signal; (middle) signal after time-scale expansion by a factor of 4 and upward
pitch shift by a factor of 2; (bottom) resulting signal after modification using phase random-
ization algorithm. (frame length before modification = 10 ms, Ny = 5,4y, ~ U[—m, 7))

63



rowband basis functions” were used to represent unvoiced speech in a speech coding
application. In the algorithm proposed here, however, a straightforward extension of
the ABS/OLA synthesis procedure provides for a computationally efficient synthesis
of these modulated components, avoiding filtering of long, randomly generated se-
quences. The effects of sinusoidal phase coherence on voiced speech quality have also
been studied in the development of speech coding applications using the sinusoidal

transform coder [30].

3.3.2 Analysis Algorithm

Voicing measure The incorporation of a voicing decision is necessary to preserve
the phase coherence of voiced speech segments. Several approaches to estimating the
“degree of voicing” are mentioned in the sinusoidal modeling and speech coding lit-
erature. In [98], the signal-to-noise ratio between a set of harmonic components and
the original speech spectrum is mapped to the degree of voicing, with the implication
that a harmonic model will better fit the spectrum in voiced speech. A similar notion
is used in a frequency-dependent voicing decision in [31]. The synthesis method de-
veloped in this paper can be coupled with any of these analysis methods to implement
frequency-dependent voicing decisions.

In experiments with this algorithm, an analysis process similar to those in [98]

and in [31] has been used. This analysis relies on the following assumptions:

e The sinusoidal components in the model will be very nearly harmonically related

in voiced portions of the speech signal.

e These harmonically-related sinusoidal components will constitute a large part

of the energy in the spectrum of the analyzed frame.

The analysis algorithm takes these assumptions into account by measuring the

signal-to-noise ratio

Ja | A@)P"

= 1) - AP 120
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where A(w) represents the sinusoidal component line spectrum with frequencies shifted
to the nearest harmonic (i.e., no longer quasiharmonic components), and S(w) repre-
sents the original signal spectrum. The limits @ and b represent the upper and lower
edges of frequency bands over which the SNR measure is computed. The SNR values
obtained are then mapped to a “degree of voicing” in the interval [0, 1]. Histograms
of SNR values over hand-marked voiced and unvoiced speech are then used to set
thresholds and establish a “soft-decision” voiced /unvoiced measure.

Although this method works well in most cases, it has a critical flaw. It is highly
dependent on the stationarity of the signal and on correct estimation of the pitch. If
signal characteristics over the analysis frame duration change rapidly, the spectrum
will not consist of a set of harmonically-spaced discrete spectral lines, even in voiced
speech. Neither will this occur when the pitch period changes rapidly over the frame
duration. Instead, frames falling into these cases will be classified as “unvoiced,”
resulting in a “hoarse” speech quality in synthesis.

One example of such a degenerate case is shown in Figure 3.15. The nonsta-

13 ”

tionarity of the signal in the glottal stop of the phrase “... needle and ...” (between
samples 1000 and 1500 of the figure) results in a spectrum that does not fit the
harmonic structure assumed for voiced speech. Despite this, the signal is clearly
not unvoiced — classifying the frames in the vicinity of this aperiodic glottal activity
as unvoiced results in a distortion of important time-domain waveform characteris-
tics. This type of distortion impairs the intelligibility of the resynthesized speech and
causes audible quality degradation.

Ad hoc methods of detecting transient portions of the signal can be derived,
and these can be used to “turn-off” the phase dithering algorithm when the signal is

nonstationary.
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Figure 3.15: Effect of incorrect voicing decision on glottal stop (between samples
1000-1500) in the phrase “... needle and ...” top: original signal; middle: spectral mag-
nitude of original — note that spectrum does not fit the assumed form of voiced speech;
bottom: resynthesized signal after phase dithering applied with sinusoidal model — glottal
stop waveform is disrupted.
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3.3.3 Results

Subjective comparison test To confirm the appropriateness of the phase ran-
domization approach, a subjective comparison test was conducted using 25 volunteer
students and employees of the Center for Signal and Image Processing. Of these 25
subjects, two were experienced in subjective speech quality assessments, and 23 were
naive listeners. The subjects were asked to compare 32 pairs of utterances, where
each pair consisted of one utterance synthesized with the phase randomization al-
gorithm applied and one synthesized using ABS/OLA without this extension. The
order of the sentence pairs and the elements within each pair were selected randomly
for each subject. For each trial, the two synthesized utterances were presented via
headphones. The subject was then asked to select utterance “A” or “B” according
to his or her preference “in terms of overall sound quality.”

The speech material used as input to the algorithm consisted of eight short
phrases extracted from sentences in the TIMIT database [99], shown in Table 3.1. The
material used was selected to represent an equal number of male and female voices
and to contain several unvoiced phonemes. The sinusoidal model analysis procedure
was run on each of the sentences, and a “hard” voicing decision was made based
on a comparison of the quasiharmonic sinusoidal model components to a harmonic
spectrum, as described in the previous section. Additional constraints were applied
to prevent a decision of “unvoiced” in voicing onsets and other voiced transient signal
segments. In a method similar to that employed in STC speech coding [98], this V/UV
decision was used to control V; in Equation (3.22) via a “voicing cutoff frequency”

We, such that
1 if wp > w
V, = ‘) (3.27)
0 otherwise
where w; is the [th sinusoid frequency. In frames declared voiced, w, was set to ,
while in unvoiced frames w, was set to 0. A time-domain smoothing of the sequence of

w, values between these extremes was performed by passing the sucessive values of w,
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Table 3.1: Phrases used in subjective comparison test of phase randomization algorithm.

key utterance text

femA ...shimmers on the ocean...

femB ...cyclical programs...

femC ...seamstresses attach zippers...

femE ...through Sequoia national forest...
maleA ...his scalp was blistered...
maleB ...catastrophic economic cutbacks...
maleC ...four extra eggs for breakfast...
maleD ...many wealthy tycoons splurged...

through a lowpass filter to provide a gradual transition between voiced and unvoiced
speech.

Four test conditions were applied to each of the eight sentences. Time-scale
modifications by factors of 2.0, 3.0, and 4.0 (slower speech) were applied with no
pitch modification, and time-scale modification by a factor of 3.0 was also applied in

combination with a pitch modification by a factor of 1.5 (higher pitch).

Test results and discussion The results of the four test conditions described
above are given in Table 3.2. Each value given represents a percentage of responses
preferring the phase randomization method over the standard modification method,
averaged over the eight utterances and 25 test subjects. Based on this number of
trials, the test results show a preference for the phase randomization method that is
statistically significant (p < 0.001) in all cases.

Although it should be expected that the algorithm would provide greater im-
provement of speech quality in more drastic modifications, this was not observed in
the response percentages for tests B, C, and D. One explanation of this effect is as
follows: The subjects were instructed only to compare “overall sound quality” and
not any specific aspect of the speech signals. Since most of the subjects participating

in the test were not experienced in critical listening tests for speech processing, they
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Table 3.2: Results of subjective comparison test of utterances synthesized with and without
application of phase randomization method in unvoiced speech.

test modification factors % preferring phase rand
A B=10,p=20 81.0
B B8=1.0,p=3.0 79.0
C B=1.0,p=4.0 73.5
D B=15,p=30 72.5

tended to judge both exemplars as more “unnatural” than normal speech for dras-
tic modifications of time scale or pitch. Because of this, the response percentages
tended to gravitate towards a result more consistent with guessing rather than defi-
nite preference of one or another method. This theory was confirmed by interviews
with subjects after the test. It is also interesting to note that the two subjects who
had previous critical listening experience chose the phase randomization method in

100% of the tested cases.

3.4 Pitch Pulse Onset Time Estimation

One major source of artifacts arising in sinusoidal model-based speech modification is
errors in the pitch pulse onset time estimation algorithm, as discussed in Section 2.1.1,
the pitch pulse onset time is defined to be the time index of the pitch pulse closest to
the frame center. In the ABS/OLA model, this quantity plays an important role in
(1) aligning adjacent frames in OLA synthesis, and (i7) removing linear phase terms

prior to pitch modification. Objectionable artifacts arise for two reasons:

1. When pitch pulse onset time estimation errors occur such that the difference
between successive onset time locations is not an integer multiple of 75, non-
coherent overlap between adjacent frames occurs in overlap-add synthesis. Fig-

ure 3.16 compares the waveform appearance of correctly aligned frames to the
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situation where pitch pulse onset times in adjacent frames are not consistent
with each other. The susceptibility of the algorithm to such errors is discussed
more thoroughly in Section 4.5 within the context of frame alignment in text-

to-speech synthesis.

. Errors in locating the absolute locations of pitch pulses (independent of in-
terframe onset time differences) cause problems in the “phasor interpolation”
method of modifying the pitch period [24]. As mentioned in the time-domain
analysis of the ABS/OLA pitch modification in Section 3.1.3, the pitch pulse
onset time is used to remove linear phase offsets, as indicated in Figure 3.5.

These errors result in a garbled speech quality.

The original onset time algorithm (based on the work of McAulay and Quatieri
[17, 30, 100]) attempts to locate these absolute locations and works well for
strongly voiced speech. However, in weakly voiced speech segments, the esti-

mator becomes unreliable, leading to the artifacts mentioned.

These observations suggest that a necessary component is an onset time esti-

mator that can robustly find the onset time location within a speech frame and can

maintain consistency with the pitch period from frame to frame. With these two

objectives in mind, a correction algorithm was designed to correct gross errors in the

pitch pulse onset time estimates [101]. This results in a more robust, consistent onset

time estimate and eliminates misalignment artifacts.

Pitch pulse onset correction algorithm The following algorithm has been de-

vised to more robustly estimate the pitch pulse onset times of each analyzed frame.

. After sinusoidal model analysis, the following estimator function (from [100]) is
evaluated for each set (frame) of sinusoidal parameters to obtain a pitch pulse

onset time estimate Tog:

Test = arg (m;@x {i b7 cos(vy + wiT) }) , (3.28)

=0
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Figure 3.16: Effects of pitch pulse onset time estimation errors: Upper plot: Effect of pitch
pulse misalignment on resynthesized speech. Lower plot: Effect of correct pulse alignment.
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where J is the number of sinusoids in the frame, and w; is the [th component
frequency. The excitation amplitude b, and phase v, are obtained by dividing
out the (complex) vocal tract transfer function H(w;) from the sinusoidal com-
ponents. In practice, 7 is evaluated over a grid of onset time values between

-T,/2 and T,/2, where T, is the pitch period.

. For each of the estimated onset times 7.5 (k) (onset estimate for the kth frame),

a predicted onset time 7,4 for frame k + 1 is found from the pitch period 7,:

Ns — les k
Tpred(k + 1) = Test(k) + T3V {%() + 1J — Ns, (3.29)

o

where T2v9 is the average of T,(k) and T,(k + 1) and Nj is the analysis frame

length.

. The interframe onset time differences Ay and A,..q are then computed for

each frame by

Aest(k+1) = mod(7est(k + 1) — Tese(k), TM) (3.30)

Ap'red(k + 1) = mOd(Tp'I‘ed(k + 1) - Teé’t(k)’ T(;wg)’
where mod(z,n) represents  modulo n.

For each frame, the agreement of A,y and Aeq is checked. If Ay & Aprea,
then the estimated onset time is consistent with the pitch period, and 7., is a

reasonable estimate of the pitch pulse onset time. Frames that satisfy

<v (3.31)

avg
o

‘ Aest - Apred

are labeled as “consistent,” all others are labeled as “inconsistent.”*

. Typically, consistent estimates will occur in groups, generally over strongly

voiced segments of the utterance. From the entire set of onset time estimates,

4

v = 0.1 in the implementation.
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runs of K or more® consecutive consistent estimates are marked as “anchors.”
For each frame k in the set of anchor frames, the final pitch pulse onset time
7(k) is simply given by

7(k) = Test (k). (3.32)

6. The energy of each of the frames with inconsistent estimates (frames between
the anchor sets) is computed from the sinusoidal parameters. In each set of non-
anchor frames, the frame with the minimum energy is selected as a “target,” as

depicted in Figure 3.17.

7. Starting from the right end of each anchor, the onset time for each inconsistent

frame is determined by the following recursion:

N, — 7
#(k+1) = #(k) + T®9 {72(1“) + 1J — N, k= ko, ku, .o kar (3.33)

o
where 7(ky) is the onset time value at the right end of a given anchor set, and

kas is the nearest target frame’s index.

8. Starting from the left end of each anchor, the onset time for each inconsistent

frame is predicted “backward in time” by the following recursion:
N+ 7(k
Tk —1)=7(k) + 1,5 {%;()J + N, k=kok_ 1, k_n (3.34)

where T, = (To(k) +To(k—1))/2, 7(ko) is the onset time value at the left end

of a given anchor set, and k_,; is the nearest target frame to the left.

This specifies the pitch pulse onset time for all frames in the analyzed signal. Esti-
mates consistent with the pitch period are accepted, while estimates that do not agree
with the pitch period are forced to agree by replacing them with values predicted from
the pitch estimate.

The pitch pulse onset correction algorithm results in improved quality after

time-scale and pitch modification of continuous speech. The algorithm is able to

5K = 3 in the implementation.
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Figure 3.17: “Anchor frames” in pitch pulse onset time correction algorithm. “Consistent”
estimates are denoted by circles with a y-value of 1; “inconsistent” estimates by circles with

a y-value of 0. The energy contour shown is used to select “target” frames for onset time
prediction.
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correct spurious errors and inconsistencies in the algorithm results. This is especially
true of unstressed or phrase-final speech segments, which tend to exhibit greater
irregularities in voicing characteristics and waveform pulse shape [102].

However, it should be noted that long sets of erroneous, yet self-consistent,
onset estimates are not corrected by this method. For instance, the glottal excitation
patterns of male speakers sometimes exhibit a phenomenon called diplophonic double-
pulsing, which produces a “dual-pulse” excitation signal [102]. This is caused by a
second, shorter opening of the glottis during the pitch cycle. The pitch pulse onset
estimator will often choose this second pulse as the onset location for several frames
in a row, and this causes artifacts in the output speech. However, the correction
algorithm is not able to detect this error, since the secondary pulses are still separated
from each other by an interval of length 75.

Further implications of pitch pulse onset time errors are described in the next

chapter, within the context of text-to-speech synthesis.
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CHAPTER 4

TEXT-TO-SPEECH SYNTHESIS USING
A SINUSOIDAL MODEL

This section presents the application of the improved sinusoidal model described in
Chapter 3 within the framework of a concatenation-based text-to-speech system [103,
104]. First, the “front-end” system used to perform the necessary linguistic analysis
of the input text is briefly described. An overview of the proposed method is then
given, and each part of this algorithm is described in detail. Finally, its performance

is compared to that of an existing method.

4.1 Overview of Method

4.1.1 Laureate TTS System from British Telecom

The LAUREATE II system from British Telecom ranks among the best text-to-speech
systems in the commercial market in its capability to produce high-quality, natural
sounding synthesized speech. It is based on a concatenation method similar to that
described in Section 2.2.4, and this makes it well-suited to serve as a testbed for
the algorithms described in this Chapter. The BT research group responsible for
development of LAUREATE II has generously lent parts of their system to the Center
for Signal and Image Processing at Georgia Tech for the purpose of serving as a

technology testbed.



Furthermore, this system has been designed with a very modular structure to
make it well suited to be both a research-oriented and a commercial software package.
As shown in Figure 4.1, the system is broken into components that follow quite closely
the module descriptions given in Section 2.2. Each of these components is designed
to interact with a “core” application, which stores data in a “linguistic object” that
is not tied to the theories embodied by any of the components. Each component
can also access data specific to itself, via external data files. For example, the “Unit
selection” and “Realization” components use data files that describe the speech data
inventory.

The focus of the work described in this proposal is on the “Realization” compo-
nent of Figure 4.1. This component is responsible for retrieving units from the speech
database, concatenating these units, smoothing at the boundaries, and applying the

necessary prosodic contours to the synthetic speech.

4.1.2 Sinusoidal Model Synthesis Module

Figure 4.2 shows a block diagram of the sinusoidal model synthesis algorithm, which
is a subsystem of the “Realization” component in Figure 4.1. A brief overview of the

function of each block is as follows:

Inventory preprocessing The first step in the synthesis process involves prepro-
cessing the entire inventory of speech used by the synthesizer. This consists of
applying the ABS/OLA sinusoidal model analysis to each sentence in the speech
database, and organizing the resulting model parameters into a form suitable

for the rest of the synthesis software.

Unit retrieval In the “Unit selection” module of Figure 4.1, a selection process
similar to those described in Section 2.2.4 is performed, and pointers to these
units in the inventory are stored in the “linguistic data object” related to the

sentence. The synthesis module must at this point extract the needed sinusoidal

77



Linguistic
Object

Input Component

’s

Interface

TTS Core

|

<—— textinput

API
Text i Satellite
normalization components
Pronunciation
Post-lexical rules and
i e >
continuous speech effec Y
\\
\
\
\
Parsing = \\
\
NN
~ \
Pitch accent Component
assignment data
Unit ‘
selection < >
Duration
rules
Realization ——> synthetic speech
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model parameters for each unit from the inventory.

Unit normalization Since the units extracted from the speech inventory are gener-
ally not matched exactly in terms of energy, a normalization must be applied.
This amplitude normalization is critical in reducing perceptible discontinuities

in the short-term energy of the output speech.

Unit joining After normalization, the units are joined by simply adding the units
to a data structure associated with the sinsoidal model for the entire synthetic
utterance. The location of boundary frames must be noted so that realignment

of pitch pulses and other smoothing algorithms can be applied.

Boundary smoothing Discontinuities in spectral shape, phase (i.e., pitch pulse lo-
cation ), energy, fundamental frequency, and other attributes will occur across
the boundaries of joined segments. These arise from coarticulatory effects and
other sources of variation in voice quality. Various smoothing algorithms are

applied to remove or lessen the effects of these discontinuities.

Prosody modification In earlier modules shown in Figure 4.1, phonological models
are used to derive a fundamental frequency contour and segmental duration
information for the utterance to be synthesized. Based on the pitch and duration
characteristics of the sinusoidally modeled segments, pitch modification and
time-scale modification factors are derived for each frame of the sinusoidal model

of the synthetic utterance.

Synthesis Given the sinusoidal model parameters and modification factors for each

frame, overlap-add synthesis is performed to synthesize the desired utterance.

The rest of this section will describe in greater detail the normalization, smoothing,
and prosody modification stages of the algorithm described above.
The ABS/OLA sinusoidal model analysis generates several quantities that rep-

resent each input signal frame, including (7) a set of quasi-harmonic sinusoidal param-
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eters for each frame (with an implied fundamental frequency estimate), (iz) a slowly
time-varying gain envelope, and (ii7) a spectral envelope for each frame. Disjoint
modeled speech segments can be concatenated by simply stringing together these
sets of model parameters and resynthesizing, as shown in Figure 4.3. However, since
the joined segments are analyzed from disjoint utterances, substantial variations be-
tween the time- or frequency-domain characteristics of the signals may occur at the
boundaries. These differences manifest themselves in the sinusoidal model parame-
ters. Thus, the goal of the algorithms described here is to make discontinuities at the
concatenation points inaudible by altering the sinusoidal model components in the

neighborhood of the boundaries.

4.2 Unit Normalization

The units extracted from the inventory may vary in short-time signal energy, depend-

ing on the characteristics of the utterances from which they were extracted. This
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variation gives the output speech a very stilted, unnatural rhythm. For this reason, it
is necessary to normalize the energy of the units. However, it is not straightforward
to adjust units that contain a mix of voiced and unvoiced speech and/or silence, since
the RMS energy of such segments varies considerably depending on the character of
the unit.

The approach taken here is to normalize only the voiced sections of the synthe-
sized speech. In the analysis process, a global RMS energy for all voiced sounds in
the inventory is found. Using this global target value, voiced sections of the unit are
multiplied by a gain term that modifies the RMS value of each section to match the
target. This can be performed by operating directly on the sinusoidal model param-
eters for the unit. The average energy (power) of a single synthesized frame of length
N, can be written as

1 Ne—l

EJ%,, = — Z |s[n

SnO
1Nsl 2

= — > |o[n])_ arcos(wpn + @) - (4.1)

SnO

Assuming that o[n] is relatively constant over the duration of the frame, Equa-
tion (4.1) can be reduced to

Ng—1

Ef, = Z ZO cos(wkn + ¢)|”
Sk n
L
k

r

Z‘QI

(4.2)

Q,

Q

N~

where 2

is the square of the average of o[n| over the frame. This energy estimate
can be found for the voiced sections of the unit, and a suitable gain adjustment can
be easily found. In practice, the applied gain function is smoothed to avoid abrupt

discontinuities in the synthesized signal energy.
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4.2.1 Voicing Decision Using Sinusoidal Parameters

In the energy normalization described above, only voiced segments are adjusted. This
implies that a voiced /unvoiced decision must be incorporated into the analysis. Since
several parameters of the sinusoidal model are already available as a byproduct of
the analysis, it is reasonable to attempt to use these to make a voicing decision. For
instance, the pitch detection algorithm of the ABS/OLA model (described in detail
in [24]) typically defaults to a low frequency estimate below the speaker’s normal pitch
range when applied to unvoiced speech. Figure 4.4 shows fundamental frequency and
gain contour plots for the phrase “sunshine shimmers,” spoken by a female, with a
plot of the two against each other to the right. It is clear from this plot (and even the
wp plot alone) that the voiced and unvoiced sections of the signal are quite discernible
based on these values.

For this analyzed phrase, it is easy to choose thresholds of pitch or energy
to discriminate between voiced and unvoiced frames, but it is difficult to choose
global thresholds that will work for different talkers, sampling rates, etc. By taking
advantage of the fact that this analysis is performed off-line, it is possible to choose
automatically such thresholds for each utterance, and at the same time make the
V/UV decision more robust (to pitch errors, etc.) by including more data in the
V/UV classification.

This can be achieved by viewing the problem as a “nearest-neighbor” cluster-
ing of the data from each frame, where feature vectors consisting of w, estimates,
frame energy, and other data are defined. The centroids of the clusters can be found
by employing the K-means (or LBG) algorithm commonly used in vector quantiza-
tion [105], with K = 2 (a voiced class and an unvoiced class). This algorithm consists

of two steps:

1. Each of the feature vectors is clustered with one of the K centroids to which it

is “closest,” as defined by a distance measure, d(v, c).
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2. The centroids are updated by choosing as the new centroid the vector that
minimizes the average distortion between it and the other vectors in the cluster

(e.g., the mean if a Euclidean distance is used).

These steps are repeated until the clusters/centroids no longer change. In this case,
the feature vector used in the voicing decision is
T
V=|wy 0 Hsnr | »
where wy is the fundamental frequency estimate for the frame, 7 is the average of the
time envelope o[n] over the frame, and Hgypg is the ratio of the signal energy to the
energy in the difference between the “quasiharmonic” sinusoidal components in the
model and the same components with frequencies forced to be harmonically related.!
Since these quantities are not expressed in terms of units that have the same order

of magnitude, a weighted distance measure is used:
d(v,c) = (v—c)'C (v —-oc), (4.3)

where C is a diagonal matrix containing the variance of each element of v on its main
diagonal.

This general framework for discriminating voiced and unvoiced frames has two
benefits: (i) it eliminates the problem of manually setting thresholds that may or
may not be valid across different talkers; and (i7) it adds robustness to the system,
since several parameters are used in the V/UV discrimination. For instance, the
inclusion of energy values in addition to fundamental frequency makes the method
more robust to pitch estimation errors. The output of the voicing decision algorithm

for an example phrase is shown in Figure 4.5.

1 This is a measure of the degree to which the components are harmonically related to each other.
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Figure 4.5: Voicing decision result, wy contour, and phonetic annotation for the phrase
“...sunshine shimmers...” using nearest neighbor clustering method.

4.3 Boundary Smoothing

4.3.1 Gain Smoothing

The unit normalization method described in Section 4.2 removes much of the energy
variation between adjacent segments extracted from the inventory. However, since
this normalization is performed on a fairly macroscopic level, perceptually significant
short-time signal energy mismatches across concatenation boundaries remain.

An algorithm for smoothing the energy mismatch at the boundary of disjoint

speech segments is described as follows:

1. The frame-by-frame energies of Ng,,0n frames (typically on the order of 50 ms)

around the concatenation point are found using Equation (4.2).

2. The average frame energies for the left and right segments, given by Ej and

E'r, respectively, are found.

3. A target value, E},,4et, for the energy at the concatenation point is determined.
The average of £, and Eg in the previous step is a reasonable assumption for

such a target value.
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4. Gain corrections G;, and Gy are found by

Etar et Etar et
G, = ) 2erget Gr = /79‘ 4.4
L EL R ER ( )

5. Linear gain correction functions that interpolate from a value of 1 at the ends
of the smoothing region to G and G at the respective concatenation points
are created, as shown in Figure 4.6. These functions are then factored into the

gain envelopes o [n] and og[n].

It should be noted that incorporating these gain smoothing functions into o [n] and
or[n] requires a slight change in methodology. In the original model, the gain envelope

o[n] is applied after the overlap-add of adjacent frames, i.e.,
z[n] = o[n] (ws[n]sc[n] + (1 — ws[n])srln]) (4.5)

where wg[n] is the window function, and s;,[n] and sg[n] are the left and right synthetic
contributions, respectively. However, both o7 [n] and og[n] should be included in the
equation for the disjoint segments case. This can be achieved by splitting o[n] into 2
factors in the previous equation and then incorporating the left and right time-varying

gain envelopes o [n] and og[n] as follows
z[n] = wynlop[n]spn] + (1 — wy[n])or[n]|sg[n]. (4.6)

This algorithm is very effective for smoothing energy mismatches in vowels and
sustained consonants. However, the smoothing effect is undesirable for concatena-
tions that occur in the neighborhood of transient portions of the signal (e.g., plosive
phonemes like /k/), since “burst” events are smoothed in time. This can be overcome
by using phonetic label information available in the TTS system to vary Ng,00tn based

on the phonetic context of the unit concatenation point.

4.3.2 Spectral Smoothing

Another source of perceptible discontinuity in concatenated signal segments is mis-

match in spectral shape across boundaries. The segments being joined are somewhat
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similar to each other in basic formant structure, due to matching of the phonetic
context in unit selection. However, differences in spectral shape are often still present
because of voice quality (e.g., spectral tilt) variation and other factors.

One input to the ABS/OLA pitch modification algorithm is a spectral envelope
estimate represented as a set of low-order cepstral coefficients. This envelope is used
to maintain formant locations and spectral shape while frequencies of sinusoids in the
model are altered. An “excitation model” is computed by dividing the Ith complex
sinusoidal amplitude a;e’® by the complex spectral envelope estimate H (w) evaluated
at the sinusoid frequency w;. These excitation sinusoids are then shifted in frequency
by a factor 3, and the spectral envelope is remultiplied by H((Bw;) to obtain the
pitch-shifted signal. This operation also provides a mechanism for smoothing spectral
differences over the concatenation boundary, since a different spectral envelope may
be reintroduced after pitch-shifting the excitation sinusoids.

Spectral differences across concatenation points are smoothed by adding weighted
versions of the cepstral feature vector from one segment boundary to cepstral feature
vectors from the other segment, and vice-versa, to compute a new set of cepstral fea-
ture vectors. Assuming that cepstral features for the left-side segment {..., Lo, £1, Lo}
and features for the right-side segment {Rg, R1,Ro,...} are to be concatenated as
shown in Figure 4.7, smoothed cepstral features L] for the left segment and R; for

the right segment are found by

'R,Z = kak + (1 - ’U)k)ﬁo,

where

k

wy =05+ —
2]Vsmooth

k= 1a 2a ) Nsmooth

and where Ng00in frames to the left and right of the boundary are incorporated into
the smoothing. It can be shown that this linear interpolation of cepstral features is

equivalent to linear interpolation of log spectral magnitudes.
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Once £} and Rj are generated, they are input to the synthesis routine as an
auxiliary set of cepstral feature vectors. Sets of spectral envelopes Hy(w) and H{(w)
are generated from {Ly, Ry} and {L£,R;}, respectively. After the sinusoidal excita-
tion components have been pitch-modified, the sinusoidal components are multiplied
by Hi(w) for each frame k to impart the spectral shape derived from the smoothed

cepstral features.

4.4 Prosody Modification

One of the most important functions of the sinusoidal model in this synthesis method
is as a means of performing prosody modification on the speech units.

It is assumed that higher levels of the system have provided the following inputs:
e a sequence of concatenated, sinusoidally-modeled speech units
e a desired pitch contour
e desired segmental durations (e.g., phone durations)

Given these inputs, a sequence of pitch modification factors {3y} for each frame can
be found by simply computing the ratio of the desired fundamental frequency to the
fundamental frequency of the concatenated unit. Similarly, time scale modification
factors {px} can be found by using the ratio of the desired duration of each phone
(based on phonetic annotations in the inventory) to the unit duration.

The set of pitch modification factors generated in this manner will generally
have discontinuities at the concatenated unit boundaries. However, when these pitch
modification factors are applied to the sinusoidal model frames, the resulting pitch

contour will be continuous across the boundaries.
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4.5 Pitch Pulse Alignment

As mentioned in Section 2.2.4, proper alignment of adjacent frames is essential to
producing high quality synthesized speech. If the pitch pulses of adjacent frames
do not add coherently in the overlap-add process a “garbled” character is clearly
perceivable in the resynthesized speech. There are two tasks involved in properly
aligning the pitch pulses: (i) finding points of reference in the adjacent synthesized
frames, and (i7) shifting frames to properly align pitch pulses, based on these points
of reference.

The first of these requirements is fulfilled by the pitch pulse onset time estima-
tion algorithm described in Section 3.4. This algorithm attempts to find the time at
which a pitch pulse occurs in the analyzed frame. The second requirement, aligning
the pitch pulse onset times, must be viewed differently depending on whether the
frames to be aligned come from continuous speech or concatenated disjoint utter-
ances. The time shift equation derived in [24] for continuous speech will be now be

briefly reviewed in order to set up the problem for the concatenated speech case.

4.5.1 Continuous Speech Case

The diagrams in Figures 4.8 and 4.9 depict the locations of pitch pulses involved in
the overlap-add synthesis of one frame. Analysis frames £ and k£ + 1 each contribute
to the synthesized frame, which runs from 0 to Ny — 1. The pitch pulse onset times
7, and 7,41 describe the locations of the pitch pulses closest to the center of analysis
frames k and k + 1, respectively. In Figure 4.9, the time-scale modification factor
p is incorporated by changing the length of the synthesis frame to p/Ng, while pitch
modification factors By and (.1 are applied to change the pitch of each of the analysis
frame contributions. A time shift § is also applied to each analysis frame. We assume
that time shift d; has already been applied, and the goal is to find 6,1 to shift the

pitch pulses such that they coherently sum in the overlap-add process.
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From the schematic representation in Figure 4.8, an equation for the time
location of the pitch pulses in the original, unmodified frames k£ and k£ + 1 can be
written as follows:

tyli) = T +ily

tepli) = Thp HITE (4.8)

while the indices 7 that refer to the pitch pulses closest to the center of the frame are

given by
3 . —Tk + %
N,
. Te+1 + 5
ht1 = — {%TﬁJ . (49)

Thus t[ix] and tx41[tk+1] are the time locations of the pitch pulses adjacent to the
center of the synthesis frame.
Referring to Figure 4.9, equations for these same quantities can be found for

the case where the time-scale/pitch modifications are applied:

. Tk . Té“)
tli] = — -6 +i|— 4.10
¢l G " (ﬂk (4.10)
Tk—|—1
tenli] = ;’;; A ( ﬂ(l)ﬂ—l) (4.11)
. —Tk+ﬂk(5k+p]2vs)
i = Tk (412)
0
+ Ns
1 = — r—kﬂ Ii)ﬁkﬂ 2 J (4.13)
Ty

Since the analysis frames k and k+ 1 were analyzed from continuous speech, we
can assume that the pitch pulses will naturally line up coherently when § = p = 1.
Thus the time difference A in Figure 4.8 will be approximately the average of the
pitch periods T and T¥*!. To find 0,41 after modification, then, it is reasonable to

assume that this time shift should become A = A/ Baw, where [3,, is the average of [

and ﬁk:—i—l .
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Letting A = A/f,, and using Equations (4.10) through (4.13) to solve for &1

results in the time shift equation [24]

5k+1 = 5]6 + (pk - l/ﬂav)Ns + M (E + Tk+1 ) - Z_kTé€+ (’Lk]j(gC _ik+1T(;c+1)/ﬂav-
Qﬂav ﬂk ﬁlﬁ-l ﬂk
(4.14)

It can easily be verified that Equation (4.14) results in dx; = d) for the case p =
Bk = Bry1 = 1. In other words, the frames will naturally line up correctly in the
no-modification case since they are overlapped and added in a manner equivalent to
that of the analysis method. This behavior is advantageous, since it implies that even
if the pitch pulse onset time estimate is in error, the speech will not be significantly

affected when the modification factors p, B, and [, are close to 1.

4.5.2 Concatenation Case

The approach to finding 6,1 given above is not valid, however, when finding the
time shift necessary for the frame occurring just after a concatenation point, since
even the condition p = f; = frr1 = 1 (no modification) does not assure that the
adjacent frames will naturally overlap correctly. This is, again, due to the fact that
the locations of pitch pulses (hence, onset times) of the adjacent frames across the
boundary are essentially unrelated. In this case, a new derivation is necessary.

The goal of the frame alignment process is to shift frame k£ + 1 such that the
pitch pulses of the two frames line up and the waveforms add coherently. A reasonable
way to achieve this is to force the time difference A between the pitch pulses adjacent
to the frame center to be the average of the modified pitch periods in the two frames.
It should be noted that this approach, unlike that above, makes no assumptions
about the coherence of the pulses prior to modification. Typically, the modified pitch
periods T¥ /B, and Ty /B4, will be approximately equal,? thus,

A =T =ty 1 [igs1] + PNy — te[i], (4.15)

2The desired fundamental frequency contour has already been imposed on the speech, as described
in the previous section.
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where

k k+1
T(;wg — (T_ T ) /2
By Bt

Substituting Equations (4.10) through (4.13) into Equation (4.15) and solving for

0k+1, we obtain

Tk+1

Téﬂ-l-l Tk
) =0, + +17 —_— ) N, — T‘“’g 4.16
T ﬁk ’““(/ml) (m) TP (4.16)

This gives an expression for the time shift of the sinusoidal components in frame k+1.

This time shift (which need not be an integer) can be implemented directly in the

frequency domain by modifying the sinusoid phases ¢; prior to resynthesis:
i = ¢i + ifw,d. (4.17)

Reliance on pitch pulse onset time estimates It has been confirmed experi-
mentally that applying Equation (4.16) does indeed result in coherent overlap of pitch
pulses at the concatenation boundaries in speech synthesis. However, it should be
noted that this method is critically dependent on the pitch pulse onset time estimates
T and 7yy1. If either of these estimates is in error, the pitch pulses will not overlap
correctly, distorting the output waveform. This underscores the importance of the
onset estimation algorithm developed in Section 3.4. For modification of continuous
speech, the onset time accuracy is less important, since poor frame overlap only occurs
due to an onset time error when [ is not close to 1.0, and only when the difference
between two onset time estimates is not an integer multiple of a pitch pulse. However,
in the concatenation case, onset errors nearly always result in audible distortion, since
Equation (4.16) is completely reliant on the correct estimation of pitch pulse onset
times to either side of the concatenation point.

In the TTS system developed for this research, the speech inventory was spoken
by a fairly breathy female speaker. Because of the characteristics of her voice, the

onset time algorithm made frequent errors. To circumvent this problem, auxiliary

96



information was used. Pitchmarks derived from an electroglottograph® were used as
initial estimates of the pitch onset time. Instead of relying on the onset time estimator
to search over the entire range [—7,/2,T,/2], the pitchmark closest to each frame
center was used to derive a rough estimate of the onset time, which was then refined
using the estimator function described earlier. This rough estimate dramatically

improved the performance of the onset estimator and the output speech quality.

4.6 Results

In order to evaluate the quality of speech produced by the sinusoidal model-based
text-to-speech system, a listener evaluation of the algorithm in comparison to an
implementation of the time-domain PSOLA synthesis method (Section 2.2.4) was

performed.

4.6.1 Subjective comparison

A subjective comparison experiment was performed using the same 25 subjects as
in the experiment described in Section 3.3.3. The subjects were asked to compare
30 pairs of sentences: one synthesized using PSOLA and one synthesized using the
sinusoidal model synthesis method developed in this research. Synthesis units were
selected from an inventory of continuous speech using a nonuniform unit selection
procedure similar to the techniques described in Section 2.2.4, and the same units
were used in each method. Intonation was generated by a phonological model, and
was the same in both cases. No explicit duration model was used—the durations of
units selected from the inventory were not changed in the final synthesized sentence.
The phone-level durations were, however, the same for the PSOLA and sinusoidal

model outputs.

3The electroglottograph produces a measurement of glottal activity that can be used to find
instants of glottal closure.
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The order of the sentence pairs and the order of the elements of each pair were
selected randomly for each subject. The text items used as input to the synthesizers
were three sets of 10 sentences taken from the “Harvard sentences” — the 30 sentences
used are shown in Table 4.1. For each trial, the text representation of the sentence
was displayed for the subject, and the two synthesized sentences were presented via
headphones. The subject was then asked to select sentence “A” or “B” according to

his or her preference “in terms of overall sound quality.”

4.6.2 Comparison results

The results of the comparison test are shown in a bar graph in Figure 4.10, and his-
tograms of by-sentence and by-subject results are shown in Figures 4.11(a) and 4.11(b).

Across all subjects and test cases, the results were as follows:

Prefer sinusoidal model method 52 %
Prefer PSOLA method 48 %

This result fails to show a statistically significant preference for the sinusoidal model
method. (Based on 750 binomial trials, the standard deviation is ¢ = 13.7, and the
probability that this result is due to chance is 0.2 [106].) In informal questioning
after the test, most subjects reported having difficulty in distinguishing between the

sentences in the comparison.

By-subject and by-sentence breakdown The breakdown by sentence in Fig-
ure 4.11(a) shows that for one particular sentence (Sentence 4.7), the sinusoidal model
was preferred by a statistically significant 92% of subjects (p < 0.001). Upon review
of the PSOLA exemplar for this sentence, a “crackling” distortion was noted during
one brief section of the file. Since this artifact was not present in the sinusoidal model
output (which used the same source material), it was assumed that this was produced
by a failure of the PSOLA implementation for this input. For two sentences (Sen-

tences 3.6 and 4.3), a significant number of subjects preferred the PSOLA output.
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Table 4.1: Sentences used in TTS system subjective comparison test.

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
1.8.
1.9.
1.10.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.

The birch canoe slid on the smooth planks.
Glue the sheet to the dark blue background.
It’s easy to tell the depth of a well.

These days a chicken leg is a rare dish.

Rice is often served in round bowls.

The juice of lemons makes fine punch.

The box was thrown beside the parked truck.
The hogs were fed chopped corn and garbage.
Four hours of steady work faced us.

A large size in stockings is hard to sell.

The small pup gnawed a hole in the sock.

The fish twisted and turned on the bent hook.
Press the pants and sew a button on the vest.
The swan dive was far short of perfect.

The beauty of the view stunned the young boy.
The blue fish swam in the tank.

Her purse was full of useless trash.

The colt reared and threw the tall rider.

It snowed, rained, and hailed the same morning.
Read verse out loud for pleasure.

Hoist the load to your left shoulder.

Take the winding path to reach the lake.
Note closely the size of the gas tank.

Wipe the grease off his dirty face.

Mend the coat before you go out.

The wrist was badly strained and hung limp.
The stray cat gave birth to kittens.

The young girl gave no clear response.

The meal was cooked before the bell rang.
What joy there is in living.
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Percent subjects perferring SINUSOIDAL MODEL by sentence number
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Figure 4.10: Subjective comparison responses by sentence. Bars indicate percentage of
subjects preferring sinusoidal synthesis method. Sentence numbers correspond to those in
Table 4.1.

Across sentences Across subjects
61 ] 61 n
5 —Zq nY o 20 5
| | | |
I I 20 —
4 L] N 4 20\ 0\ \0 \20
I I I I I I I I
3r L Al e ! 3r I nho |
I | I I I I I
I | I I I I I
2r 2r
| It [ [
I | I I I I
1r I | I I b 1r I I
[ ( 0o H [ ( [ N
| | | | | |
0 - - ‘ 0 ‘ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100
% of subjects preferring sin model % sentences preferring sin model

(a) (b)

Figure 4.11: Histograms of listener preference for sinusoidal method (a) by sentence (b)
by subject. Labeled dashed lines indicate significance levels for (a) 25 subjects (o = 10.0%)
and (b) 30 test sentences (o = 9.1%).
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In Sentence 3.6, a misalignment between frames occurred in the sinusoidal model
synthesis, causing a phase discontinuity (pitch pulse misalignment) between two con-
catenated segments in one word. No obvious differences were audible in Sentence
4.3.

The breakdown by subject in Figure 4.11(a) shows that one particular subject
preferred a significant number of sentences produced by the sinusoidal model method
(p < 0.006). (It is interesting to note that this subject is a student researching high-
fidelity audio coding methods, and he often performs critical listening assessments.)

No subjects preferred the PSOLA method at a significance higher than (p < 0.07).

4.6.3 Discussion

The results of the subjective comparison indicate that, taken as a whole, the pool of
25 listeners did not prefer one algorithm over the other. This suggests that for this
particular application, there is no clear advantage in speech quality to be gained by
using one method or the other.

It should be emphasized that the algorithms were tested as part of a full TTS
system with several interdependent modules. Several factors may help explain why
the two synthesis methods produce results of similar subjective quality in this appli-

cation:

e Upon review of the synthesized audio files, it was clear that the synthesis results
for each sentence were either both very good or both very poor in terms of
naturalness and overall quality. The nature of the distortions suggests that this
quality difference was not due to characteristics of the prosody modification
algorithms, but rather the set of concatenated units selected from the inventory
during unit selection. The unit selection method was the same for both the

sinusoidal model and PSOLA cases.

In cases where the synthesis results were of very high quality and naturalness,

the units selected were matched very well to each other in terms of spectral
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shape, pitch, etc. Thus the responsibilities placed on the prosody modification
algorithm in these cases were very slight (pitch modification factors close to
1.0.). As would be expected, the superiority of one algorithm over the other
was thus less apparent, since both were essentially resynthesizing the original
speech. Both the PSOLA and ABS/OLA models are capable of nearly-exact

reconstruction of the original, unmodified speech.

In cases where both exemplars were of low quality and naturalness, this seemed
to be due to a choice of synthesis units that produced barely-intelligible speech.
Since 23 of the 25 listeners were naive to subjective tests of speech quality, these
listeners may have considered both exemplars to be of “equally poor” quality

and simply chose one or the other by chance.

Another factor that reduced the necessity for a sophisticated prosody modifi-
cation technique was the fact that the duration model in the synthesis system
was quite simplistic: the units extracted from the inventory were used with no
duration modification. Exceptions to this were “silence” phonemes, for which
durations were changed in the PSOLA implementation by simply adding or

cutting zero samples.

This fact may eliminate a weakness of PSOLA and a strength of ABS/OLA
from consideration in the test. Empirical results of time-scale expansion and
contraction experiments using the ABS/OLA model have shown this applica-
tion to be one of its strong points. In contrast, time-scale expansion using
PSOLA has been cited as one of its weaknesses [11]. In this method, the signal
is time-expanded by repeating windowed waveform segments, which introduces
unwanted periodicities into the output signal, perceivable as tonal noise. Sub-
jective comparison experiments using a T'T'S system that employs an explicit
duration model would perhaps show an increased preference for the ABS/OLA

method.
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In addition to speech quality, other factors should be considered in the com-

parison between the two algorithms:

Computational complexity It is possible to implement PSOLA using approxi-
mately 7 operations per sample. The ABS/OLA model, on the other hand, re-
quires greater than 40 operations per sample [24]. Although reduced complexity
is clearly one advantage of the PSOLA method, the synthesis requirements of
the ABS/OLA model are still quite reasonable for most applications. This is
especially true given the fact that a concatenation-based TTS system requires
significant storage requirements: such a system will most often be implemented

on a PC or workstation, rather than in a low-power embedded application.

Disk storage requirements In the implementation of the sinusoidal model system
developed in this research, little effort was made to compress the inventory
speech data to conserve disk space. Most model parameters were stored as full-
precision floating point numbers. This resulted in an inventory that required
roughly twice the storage of the uncompressed, 16 bit, 16 kHz-sampled speech
used by the PSOLA algorithm. Since the sinusoidal model was originally de-
veloped as a speech coding algorithm [107, 108], it is reasonable to assume that
these data could be compressed significantly with little or no perceivable loss of
quality. However, exploration of such compression algorithms was beyond the

scope of this research.

Algorithmic flexibility The results of the subjective comparison test do not con-
clusively demonstrate superiority of the sinusoidal model method. However, the
added flexibility of the sinusoidal model over PSOLA-type methods is easy to
demonstrate, since PSOLA offers no convenient control over signal properties
other than pitch and time-scale evolution, while sinusoidal methods offer very

precise control of time- and frequency-domain signal characteristics.

To show that the sinusoidal model is capable of high quality synthesis and

103



manipulation of subtle aspects of the speech signal, a further application of
the method was explored—synthesis of singing voice. Although the synthesis
method was not compared formally with other singing voice systems (of which
there are very few), many unique capabilities of the model were explored in this

application, as described in the next chapter.
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CHAPTER 5

SYNTHESIS OF THE SINGING VOICE

In a joint research project between the Georgia Tech School of Music, the Center for
Signal and Image Processing, and the Texas Instruments DSP Research and Devel-
opment Center, the sinusoidal model text-to-speech synthesis framework described in
Chapter 4 was extended to the synthesis of singing voice [109]. The work described in
this chapter demonstrates that the sinusoidal model is capable of controlling subtle

details of the voice, in addition to synthesizing intelligible speech.

5.1 Acoustic and Physiological Analysis of
the Singing Voice

This section gives a brief survey of existing literature describing analysis of the human
singing voice, with particular attention given to those properties that distinguish
singing from the better-known properties of speech. Much of the existing literature
deals with the singing style found in opera, since the operatic style departs most
widely from ordinary speech, in comparison to other popular singing styles.

Singing voice and speech differ in these and other respects [110]:

1. In singing, the identity of an individual vowel is often secondary to its intona-

tion.

2. Speech sounds are not sustained as in singing.



3. The pitch range of speech is much smaller and lower than that of singing. This
means that in speech there are almost always an ample number of partials (i.e.,
harmonics) at which the spectrum is “sampled” to identify a given vowel, and

the fundamental usually lies below the first formant.

4. Subglottal pressure and laryngeal positioning are different. In speech, this pres-
sure is mainly used for loudness control, which is highly correlated with pitch.

In singing, loudness and pitch must be controlled much more independently.

5. Studies have shown that as voice training is undertaken, a vocalist is capable
of producing greater overall vocal intensity, and is able to control this intensity

more precisely than an untrained vocalist is [111].

Formant shifting

One of the most important differences between speech and singing voice involves the
tendency of singers (female singers, especially) to shift formant locations in response
to pitch changes. In [112], Sundberg describes a study of formant modification in a
female vocalist (reviewed along with other literature in [113, 110]).

In the female voice, especially soprano voices, the number of partials is few, and
the spectral envelope of vocal tract resonances is “sampled” very sparsely. In fact,
when a vowel with a low first formant is sung at a high pitch, the fundamental may
often lie well above the first formant. In addition, variations in pitch can cause wide
variations in the vowel quality and intelligibility, the overall loudness, and the physical
effort needed to produce the sound. For this reason, vocalists very often modify
the locations of formants to coincide with various partials in the source spectrum,
especially the fundamental. This is accomplished by a learned method of varying the
lip, tongue, and jaw positions when singing.

In [113, 112], it is shown that female formant locations in singing are much

like those of speech when the fundamental frequency lies below the first formant.
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However, when the fundamental rises above the first formant, trained singers shift the
first formant to follow Fy. Another observed effect is that the second formant tends to
decrease as Fj increases, gravitating towards a “neutral” value of approximately 1500
Hz for all vowels. Because of these effects, quality differences between vowels tend to
disappear as pitch is raised. Some vowels, such as those that involve lip rounding, are
difficult for most vocalists to produce at high fundamental frequencies. Modification

of formants has the following effects:

e Vocal tract resonance is optimally matched to the source by providing max-
imum energy throughput for the fundamental, and possibly by strengthening
the source amplitude through optimal loading of the glottal oscillator.

e Strong sounds are produced with minimal muscular effort.

e Variation of tone quality and loudness are minimized when the formants follow

pitch changes.

e Intelligibility of many sung vowels is increased in comparison to the unmodified

formant case.

Men modify formants to some degree as well, but this is much less necessary,
since the density of partials is much greater in the male source spectrum. Obviously,

tenor voices are much more likely candidates than basses for use of this technique.

The “singer’s formant”

One major motivation for the unique features of the singing voice is the desire of the
solo singer to be differentiated from the musical accompaniment. Formant shifting
in females plays a part in accomplishing this. A counterpart to this in male voices
is the existence of the so called “singer’s formant,” a fixed resonance which appears
in the 2500 to 3000 Hz range of the spectra of many male voices. This resonance is

independent of fundamental frequency and vocal tract shape, and has been associated
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with a resonant mode of the laryngeal collar lying just above the vocal folds [113,
110, 114]. Trained vocalists seem to exaggerate the impedance mismatch between this
laryngeal tube and the lower pharynx, creating a strong resonance that is independent,
of the rest of the vocal tract shape. This resonance helps to differentiate the singer
from the accompaniment. In a series of perception experiments [115], the subjective
description of music passages as being more “colorful” was found to correlate well
with the existence of the singer’s formant.

Female vocalists are less likely to produce a singer’s formant, but solo female
opera vocalists do tend to produce more high frequency energy than vocalists trained

in choir singing [116].

Vibrato

Vibrato is another attribute that increases timbral variety and allows the soloist to
stand out from his or her orchestral accompaniment. The physiological mechanism of
the pitch, amplitude, and timbral variation caused by vibrato is somewhat in debate.
Pure frequency modulation of the glottal source waveform is capable of producing
many of the observed effects of vibrato [113, 117]. As the source harmonics are
swept across the vocal tract resonances, timbre and amplitude modulations as well
as frequency modulation take place. Another plausible theory is that the the source
spectrum remains relatively constant, and the vocal tract resonances are modulated,
causing timbral changes that result in variation of perceived pitch [111]. Several
sources (cited in [111]) also show that auditory feedback plays a vital role in the

production of a controlled vibrato.

Glottal source characteristics

Differences in the source spectrum also distinguish the singing voice from speech. The
upper harmonics of the singing voice spectrum become more prominent as a vocalist

undergoes training, caused by changes in the glottal “closed quotient” [118]. This
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spectral richness comes with little or no extra vocal effort, but rather more efficient
use of the vocal cords [111].

Another important aspect of the vocal source is the variation of spectral tilt
with loudness. Crescendo of the voice is accompanied by a leveling of the usual
downward tilt of the spectrum [119, 120, 121] (in other words, an increase in energy
of high frequency partials). This timbral difference is also apparent in the comparison
of solo and choir-style singing [116]. In contrast, Klatt [102] has demonstrated that
speech perceived as breathy (often associated with soft speech and singing) has a
higher level of aspiration noise at higher frequencies than fully-phonated speech, and
this is an important cue to naturalness in synthetic speech. Likewise, the existence of
pulsed noise resulting from turbulence in the glottal airstream has been investigated
by Cook in the development of the SPASM singing synthesis system section [41, 120].

Pulse jitter and drift are also important attributes of the glottal waveform.
Jitter relates to variations in fundamental frequency at rates higher than the typical
vibrato frequency of a singer, typically associated with involuntary random neural
firing in the auditory feedback chain of the human pitch control mechanism. Drift
refers to slow variations of pitch due to tuning, a somewhat more controllable at-
tribute. Cook [120] studied the spectra of pitch jitter and drift signals computed
from vocalists singing in various ranges of pitch and dynamic range. In general, he
found that minimum jitter was found when singers tried to produce a signal with no
vibrato, at high pitch, and at a low dynamic level. Maximum jitter occurred with

production of vibrato, at low pitch, and at a high dynamic level.

5.2 Previous Approaches to Singing Voice
Synthesis

This section gives a brief overview of existing literature dealing with computer synthe-

sis of the singing voice. In comparison to speech synthesis, a relatively small amount
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of work on the topic has been undertaken by researchers.

SPASM The “Singing Physical Articulatory Synthesis Model” (SPASM) was de-
veloped by Perry Cook at the Stanford Center for Computer Research in Music and
Acoustics (CCRMA) [120, 122, 123]. SPASM is a graphical, interactive singing syn-
thesis system that allows the user to manipulate the various articulators of the vocal
tract and synthesize the resulting sounds in real-time on a NeXT workstation.

The underlying model is that of a “waveguide” or one-dimensional tube rep-
resentation of the vocal tract. Coupling of the vocal tract to the nasal cavity is
also modeled, as is radiation of sound through the throat wall. Various glottal pulse
shapes and turbulence (noise) sources can be used to excite the vocal tract model.
System identification tools are also provided to allow the user to obtain synthesis pa-
rameters automatically from a prerecorded sound file. The system is also capable of
interpolating parameters in various domains, such as a “shape space” that correlates
more closely with perceptual vowel attributes than linear interpolation of vocal tract
model parameters. A software synthesis system called “Singer,” which uses SPASM
parameters to synthesize sounds from simple mouse and MIDI' controls, has also
been created. This system has been applied to the synthesis of Ecclesiastical Latin

(which has very rigid phonetic structure).

CHANT The CHANT system [119] was developed by Xavier Rodet and his col-
leagues at the Institut de Recherche et Coordination Acoustique/Musique (IRCAM)
in Paris. This system, which has also been used in more general musical instrument
synthesis, relies on direct time-domain synthesis of so called “formant waveforms.”
No direct control of the glottal source is available. A spectral tilt/loudness scaling
algorithm is used to control high frequency partial amplitudes as described in the pre-

vious section. Since formant locations are explicitly controlled, the pitch-dependent

!The Musical Instrument Digital Interface (MIDI) standard is an industry-standard protocol for
controlling electronic music instruments.
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formant shifting of the female voice, as described above, can be conveniently imple-
mented. Consonants are synthesized by trial and error stylization of formant contours
that resemble formant transitions in natural singing.

Sundberg has also investigated formant synthesis methods for singing [121].

FM synthesis John Chowning of CCRMA has experimented with frequency mod-
ulation (FM) synthesis of the singing voice [124, 125]. This technique, which has
been a popular method of music synthesis for over 20 years, relies on creating com-
plex spectra with a small number of simple FM oscillators. Although this method
offers a low-complexity method of producing rich spectra and musically interesting
sounds, it has little or no correspondence to the acoustics of the voice, and seems
difficult to control. The methods Chowning has devised resemble the “formant wave-
form” synthesis method of CHANT, where each formant waveform is created by an

FM oscillator.

Other work Maher and Beauchamp have experimented with wavetable synthesis
of singing voice [117]. Wavetable synthesis is a low-complexity method that involves
filling a buffer with one period of a periodic waveform, and then cycling through
this buffer to choose output samples. Pitch modification is made possible by cycling
through the buffer at various rates. The waveform evolution is handled by updating
samples of the buffer with new values as time evolves. Experiments were conducted
to determine the perceptual necessity of the amplitude modulation which arises from
frequency modulating a source that excites a fixed-formant filter—a more difficult
effect to achieve in wavetable synthesis than in source/filter schemes. They found
that this timbral/amplitude modulation was a critical component of naturalness, and

should be included in the model.
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5.3 LyRICOS: Singing Voice Synthesis Based on

a Sinusoidal Model

5.3.1 System Overview

The system developed in this work, called LyRrIC0S, is shown in block diagram form in
Figure 5.1. It uses a commercially-available, MIDI-based music composition software
as a user interface. Using this interface, the user specifies a musical score and lyrics,
as well as other musically-interesting control parameters such as vibrato and vocal
intensity. This control information is stored in a standard MIDI file format that
contains all information necessary to synthesize the vocal passage.

Based on this input MIDI file, the system selects synthesis model parameters
from an inventory of voice data that has been analyzed offline using the sinusoidal
model. As in the TTS system described previously, units are selected to represent
segmental phonetic characteristics of the utterance, including coarticulation effects
caused by the context of each phoneme. Algorithms described in Chapter 4 are
then applied to the modeled segments to remove disfluencies in the signal at the
joined boundaries. The sinusoidal model is then used to modify the pitch, duration,
and spectral characteristics of the concatenated voice units as specified by the input
musical score and control information. Finally, the output waveform is synthesized
using OLA sinusoidal synthesis, as in the text-to-speech application.

This application of the synthesis framework is particularly interesting with
respect to the work described in this thesis because it diminishes the importance of
text analysis, prosody models, and other linguistically-motivated front-end elements
of a TTS system. Musically, each syllable of the input text is associated with one or
more notes, and the pitch and durations of each note specify much of the “prosody”

of the utterance.
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5.3.2 Voice Corpus Collection

To provide an inventory of singing voice data for use by the synthesis algorithm, a
script of nonsense words was designed, and a trained vocalist was recruited to sing

the script. The design of the voice corpus was based on the following assumptions:

1. As the number of “phonetic contexts” represented in the inventory increases,
better synthesis results will be obtained, since more accurate modeling of coar-

ticulatory effects will occur.

2. For any given voiced speech segment, resynthesis with pitch modification factors
close to 1.0 produces the most natural-sounding result. Thus, using an inventory
containing vowels sung at several pitches will result in better-sounding synthesis,

since units close to the desired pitch will usually be found.

3. Accurate modeling of transitions to and from silence contributes significantly

to naturalness of the synthesized segments.

4. Consonant clusters are difficult to model using concatenation, due to coarticu-

lation and rapidly varying signal characteristics.

5. In synthesis of singing, the musical quality of the voice is more critical than
the intelligibility of the lyrics. Thus the fidelity of sustained vowels is more

important than that of consonants.

6. Based on features such as place of articulation, voicing, nasality, etc., phonemes

i

can be grouped into “classes.” Phonemes in each class have somewhat similar

coarticulatory effects on neighboring phonemes.

Assumptions 1 — 4 above suggest that the inventory should be made as large as pos-
sible, and incorporate units with consonant clusters, transitions to and from silence,

and vowels sung at several pitches. This goal, however, must be balanced with the
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facts of (a) time and expense of collecting and annotating the inventory and (b) fa-
tigue of the vocalist. Assumptions 5 and 6 above make it possible to intelligently
make the size of the inventory smaller, but with a minimal loss of quality in the
resulting synthesis.

The script used to generate the inventory was designed as follows: For each
vowel V', the set of all possible C,V and VCg units was created, where C;, and Cg
represent “classes” of consonsants and consonant clusters located to the left and right
of the vowel, respectively, as listed in Table 5.1. The actual phonemes selected from
each class were chosen sequentially such that each consonant appeared roughly an
equal number of times across all tokens. These C,V and V Cg units were then paired
arbitrarily to form CpVCpg units. (Note that this represents only a subset of the
possible C;,V Cg units, because only the pairwise possible choices are enumerated.)

These C,VCg units were then embedded in a “carrier” phonetic context to
avoid word boundary effects. This carrier context consisted of the neutral vowel
/az/ (in ARPAbet notation), resulting in units of the form /az/ CLVCg /az/. Two
nonsense word tokens for each /az/ C VCgr /az/ unit were generated, and sung at
high and low pitches within the vocalist’s natural range.

Transitions of each phoneme to and from silence were generated as well. For
vowels, these units were sung at both high and low pitches. The affixes _ /s/ and
__ /z/ were also generated in the context of all valid phonemes. The complete list of
nonsense words is given in Tables 5.2 and 5.3.

To generate the voice data, a classically-trained male vocalist sang 500 of the
tokens described above. The recording studio time was obtained at minimal cost
through the courtesy of RKM Studios in Atlanta. The singer was placed in an iso-
lation booth, and was wearing headphones to communicate with others in a control
booth. The recording took approximately 45 minutes, after initial set-up time. The
voice data files were trimmed to remove silences, mistakes, etc. using Entropic xwaves

and a simple file cutting program, resulting in approximately 10 minutes of contin-
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Table 5.1: Classifications of consonants and clusters used in inventory design and unit
selection. Clusters fall into different classes based on whether they appear before or after
the vowel of interest (ARPAbet symbols used).

located to the LEFT of the vowel

nasals | M, N, NG
whisper | HH

voiced fricatives | V, DH, Z, ZH, JH

unvoiced fricatives | F, TH, S, SH, CH
semivowels | R, L, W, Y, BR, DR, GR, PR, TR, KR, FR,

THR, SHR, BL, GL, PL, KL, FL, SL, SHL

voiced stops | B, D, G
unvoiced stops | P, T, K, SP, ST, SK

located to the RIGHT of the vowel

nasals | M, N, NG
whisper | HH

voiced fricatives | V, DH, Z, ZH, JH
unvoiced fricatives | F, TH, S, SH, CH, FR, THR,
SHR, SL, FL, SHL

semivowels | R, L, W, Y

voiced stops | B, D, G, BR, DR, GR, BL, GL

unvoiced stops | P K
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Table 5.2: Nonsense words sung in inventory data collection.

=== low pitch === 64> ax THR AH W ax 125> ax Y 0Y G ax 187> ax ZH AH N ax
1> ax M IY M ax 65> ax NG UW D ax 126> ax B 0Y K ax 188> ax SH AH DH ax
2> ax HH IY V ax 66> ax HH UW ST ax 127> ax SP 0Y M ax 189> ax Y AH TH ax
3> ax VIY F ax 67> ax ZH UW NG ax 128> ax SHL 0Y DH ax 190> ax G AH Y ax
4> ax F IY R ax 68> ax SH UW DH ax === high pitch === 191> ax SK AH D ax
5> ax R IY B ax 69> ax R UW TH ax 129> ax N IY TH ax 192> ax THR AH T ax
6> ax B IY P ax 70> ax G UW Y ax 130> ax HH IY L ax 193> ax M UW NG ax
Ked ax P IY N ax 71> ax K UW G ax 131> ax DH IY B ax 194> ax HH UW Z ax
8> ax BR IY DH ax 72> ax SHR UW SK ax 132> ax TH IY SP ax 195> ax JH UW S ax
9> ax N IH TH ax 73> ax M UH M ax 133> ax R IY N ax 196> ax CH UW R ax
10> ax HH IH L ax 74> ax HH UH Z ax 134> ax D IY Z ax 197> ax R UW G ax
11> ax DH IH D ax 75> ax JH UH § ax 135> ax ST IY § ax 198> ax B UW K ax
12> ax TH IH T ax 76> ax CH UH R ax 136> ax BR IY W ax 199> ax P UW M ax
13> ax L IH NG ax 77> ax L UH B ax 137> ax NG IH D ax 200> ax SHR UW ZH ax
14> ax D IH Z ax 78> ax B UH P ax 138> ax HH IH ST ax 201> ax N UH SH ax
15> ax T IH S ax 79> ax SP UH N ax 139> ax Z IH NG ax 202> ax HH UH L ax
16> ax DR IH W ax 80> ax BL UH ZH ax 140> ax S IH ZH ax 203> ax V UH B ax
17> ax NG EY G ax 81> ax N OW SH ax 141> ax L IH SH ax 204> ax F UH SP ax
18> ax HH EY K ax 82> ax HH OW L ax 142> ax G IH Y ax 205> ax L UH N ax
19> ax Z EY M ax 83> ax V OW D ax 143> ax SK IH G ax 206> ax D UH JH ax
20> ax S EY ZH ax 84> ax FOW T ax 144> ax DR IH SK ax 207> ax T UH CH ax
21> ax W EY SH ax 85> ax W OW NG ax 145> ax M EY M ax 208> ax BL UH W ax
22> ax G EY Y ax 86> ax D OW JH ax 146> ax HH EY JH ax 209> ax NG OW D ax
23> ax K EY B ax 87> ax ST OW CH ax 147> ax ZH EY CH ax 210> ax HH OW ST ax
24> ax GR EY SP ax 88> ax GL OW W ax 148> ax SH EY R ax 211> ax DH OW NG ax
25> ax M EH N ax 89> ax NG AD0 G ax 149> ax W EY B ax 212> ax TH OW V ax
26> ax HH EH JH ax 90> ax HH AQ K ax 150> ax B EY P ax 213> ax W OW F ax
27> ax ZH EH CH ax 91> ax DH A0 M ax 151> ax P EY N ax 214> ax G OW Y ax
28> ax SH EH R ax 92> ax TH AD V ax 152> ax GR EY V ax 215> ax K OW G ax
29> ax Y EH D ax 93> ax Y A0 F ax 153> ax N EH F ax 216> ax GL OW SK ax
30> ax B EH ST ax 94> ax G AQ Y ax 154> ax HH EH L ax 217> ax M A0 M ax
31> ax SP EH NG ax 95> ax SK AQ B ax 155> ax JH EH D ax 218> ax HH AQ DH ax
32> ax PR EH V ax 96> ax PL A0 SP ax 156> ax CH EH T ax 219> ax Z A0 TH ax
33> ax N AE F ax 97> ax M AA N ax 157> ax Y EH NG ax 220> ax S AD R ax
34> ax HH AE L ax 98> ax HH AA DH ax 158> ax D EH DH ax 221> ax Y A0 B ax
35> ax JH AE G ax 99> ax Z AA TH ax 159> ax T EH TH ax 222> ax B AD P ax
36> ax CH AE SK ax 100> ax § AA R ax 160> ax PR EH W ax 223> ax SP A0 N ax
37> ax R AE M ax 101> ax R AA D ax 161> ax NG AE G ax 224> ax PL A0 Z ax
38> ax D AE DH ax 102> ax B AA ST ax 162> ax HH AE K ax 225> ax N AA S ax
39> ax ST AE TH ax 103> ax P AA NG ax 163> ax V AE M ax 226> ax HH AA L ax
40> ax TR AE W ax 104> ax KL AA Z ax 164> ax F AE Z ax 227> ax ZH AA D ax
41> ax NG ER B ax 105> ax N AY S ax 165> ax R AE § ax 228> ax SH AA T ax
42> ax HH ER P ax 106> ax HH AY L ax 166> ax G AE Y ax 229> ax R AA NG ax
43> ax VER N ax 107> ax ZH AY G ax 167> ax K AE B ax 230> ax D AA ZH ax
44> ax F ER Z ax 108> ax SH AY SK ax 168> ax TR AE SP ax 231> ax ST AA SH ax
45> ax L ER S ax 109> ax L AY M ax 169> ax M ER N ax 232> ax KL AA W ax
46> ax G ER Y ax 110> ax D AY ZH ax 170> ax HH ER ZH ax 233> ax NG AY G ax
47> ax SK ER D ax 111> ax T AY SH ax 171> ax DH ER SH ax 234> ax HH AY K ax
48> ax KR ER T ax 112> ax FL AY W ax 172> ax TH ER R ax 235> ax JH AY M ax
49> AH M ax NG AH 113> ax NG AW B ax 173> ax L ER D ax 236> ax CH AY JH ax
50> AH HH ax ZH AH 114> ax HH AW P ax 174> ax B ER ST ax 237> ax L AY CH ax
51> AH DH ax SH AH 115> ax JH AW N ax 175> ax SP ER NG ax 238> ax G AY Y ax
52> AH TH ax R AH 116> ax CH AW JH ax 176> ax KR ER JH ax 239> ax SK AY B ax
53> AH W ax G AH 117> ax W AW CH ax 177> AH N ax CH AH 240> ax FL AY SP ax
54> AH B ax K AH 118> ax G AW Y ax 178> AH HH ax L AH 241> ax M AW N ax
55> AH P ax M AH 119> ax K AW D ax 179> AH Z ax G AH 242> ax HH AW V ax
56> AH FR ax JH AH 120> ax SL AW T ax 180> AH S ax SK AH 243> ax V AW F ax
57> ax N AH CH ax 121> ax M 0Y NG ax 181> AH W ax M AH 244> ax F AW R ax
58> ax HH AH L ax 122> ax HH 0Y V ax 182> AH D ax V AH 245> ax W AW D ax
59> ax Z AH B ax 123> ax V OY F ax 183> AH ST ax F AH 246> ax B AW ST ax
60> ax S AH SP ax 124> ax F OY R ax 184> AH FR ax W AH 247> ax P AW NG ax
61> ax Y AH N ax 185> ax NG AH B ax 248> ax SL AW DH ax
62> ax D AH V ax 186> ax HH AH P ax 249> ax N 0Y TH ax
63> ax T AH F ax 250> ax HH 0Y L ax
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251>
252>
253>
254>
255>
256>

Table 5.3: Nonsense

DH 0Y G ax
TH Q0Y SK ax
Y 0Y M ax
D 0Y Z ax
T 0Y S ax
SHL 0Y W ax

=== low pitch ===

257>
258>
259>
260>
261>
262>
263>
264>
265>
266>
267>
268>
269>
270>
271>
272>

273>
274>
275>
276>
277>
278>
279>
280>
281>
282>
283>
284>
285>
286>
287>
288>

289>
290>
291>
292>
293>
294>
295>
296>
297>
298>
299>
300>
301>
302>
303>
304>
305>
306>
307>
308>
309>
310>
311>
312>
313>
314>
315>

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
high
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

pitch

Iy
IH
EY
EH
AE
ER
ax
AH
uw
UH
oW
AD
AA
AY
AW
oy

ax
ax
ax
ax
ax
ax
AH
ax
ax
ax
ax
ax
ax
ax

MMM T |

Iy
IH
EY
EH
AE
ER
ax
AH
uw
UH
ow
AD
AA
AY
AW
1)

mE T T T o T

ax

high pitch ===

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

M AE F ax
N AE F ax
NG AE F ax
HH AE F ax
V AE F ax
DH AE F ax
Z AE F ax
ZH AE F ax
JH AE F ax
F AE F ax
TH AE F ax
S AE F ax
SH AE F ax
CH AE F ax
AE
AE
AE
AE
AE
AE
AE
AE
AE
AE
SP AE F ax
ST AE F ax
SK AE F ax

ax
ax
ax
ax

ARHEHUTQUOU WK - W
Moo Mo o m

ax
ax
ax
ax
ax
ax

316> ## BR AE F ax
317> ## DR AE F ax
318> ## GR AE F ax
319> ## PR AE F ax
320> ## TR AE F ax
321> ## KR AE F ax
322> ## FR AE F ax
323> ## THR AE F ax
324> ## SHR AE F ax
325> ## BL AE F ax
326> ## GL AE F ax
327> ## PL AE F ax
328> ## KL AE F ax
329> ## FL AE F ax
330> ## SL AE F ax
331> ## SHL AE F ax
== high pitch ===
332> ax F AE M ##
333> ax F AE N ##
334> ax F AE NG ##
335> ax F AE V ##
336> ax F AE DH ##
337> ax F AE ZH ##
338> ax F AE JH ##
339> ax F AE F ##
340> ax F AE TH ##
341> ax F AE SH ##
342> ax F AE CH ##
343> ax F AE R ##
344> ax F AE L ##
345> ax F AE W ##
346> ax F AE Y ##
347> ax F AE B ##
348> ax F AE D ##
349> ax F AE G ##
350> ax F AE P ##
351> ax F AE T ##
352> ax F AE K ##
353> ax F AE SP ##
354> ax F AE ST ##
355> ax F AE SK ##
=== low pitch ===
356> ax F IY ##
357> ax F IH ##
358> ax F EY ##
359> ax F EH ##
360> ax F AE ##
361> ax F ER ##
362> AH F ax ##
363> ax F AH ##
364> ax F UW ##
365> ax F UH ##
366> ax F OW ##
367> ax F AOD ##
368> ax F AA ##
369> ax F AY ##
370> ax F AW ##
371> ax F 0Y ##
372> ax F EL ##
373> ax F EN ##
374> ax F EM ##
=== high pitch ===
375> ax F IY ##
376> ax F IH ##
377> ax F EY ##
378> ax F EH ##
379> ax F AE ##

words sung in inventory data collection (cont’d).
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380> ax F ER ##
381> AH F ax ##
382> ax F AH ##
383> ax F UW ##
384> ax F UH ##
385> ax F OW ##
386> ax F AQ ##
387> ax F AA ##
388> ax F AY ##
389> ax F AW ##
390> ax F 0Y ##
391> ax F EL ##
392> ax F EN ##
393> ax F EM ##

== high pitch ===
394> ax F AE F S ##
395> ax F AE TH S ##
396> ax F AE R S ##
397> ax F AE L S ##
398> ax F AE W S ##
399> ax F AE B S ##
400> ax F AE D S ##
401> ax F AE G S ##
402> ax F AE P S ##
403> ax F AE T S ##
404> ax F AE K S ##
405> ax F AE SP S ##
406> ax F AE ST S ##
407> ax F AE SK S ##
=== low pitch ===
408> ax F IY S ##
409> ax F IH S ##
410> ax F EY S ##
411> ax F EH S ##
412> ax F AE S ##
413> ax F ER S ##
414> AH F ax S ##
415> ax F AH S ##
416> ax F UW S ##
417> ax F UH S ##
418> ax F OW S ##
419> ax F A0 S ##
420> ax F AA S ##
421> ax F AY S ##
422> ax F AW S ##
423> ax F 0Y § ##
=== high pitch ===
424> ax F IY S ##
425> ax F IH S ##
426> ax F EY S ##
427> ax F EH S ##
428> ax F AE S ##
429> ax F ER S ##
430> AH F ax S ##
431> ax F AH S ##
432> ax F UW S ##
433> ax F UH S ##
434> ax F OW S ##
435> ax F AD S ##
436> ax F AA S ##
437> ax F AY S ##
438> ax F AW S ##
439> ax F 0Y S ##

440>
441>
442>
443>
444>
445>
446>
447>
448>
449>
450>
451>
452>
453>
454>
455>
456>
457>
458>
459>
460>
461>
462>

463>
464>
465>
466>
467>
468>
469>
470>
471>
472>
473>
474>
475>
476>
477>
478>
479>
480>
481>

482>
483>
484>
485>
486>
487>
488>
489>
490>
491>
492>
493>
494>
495>
496>
497>
498>
499>

high pitch ===
ax F AE M Z ##
ax F AE N Z ##
ax F AE NG Z ##
ax F AE V Z ##
ax F AE DH Z ##
ax F AE ZH Z ##
ax F AE JH Z ##
ax F AE F Z ##
ax F AE TH Z ##
ax F AE SH Z ##
ax F AE CH Z ##
ax F AE R Z ##
ax F AE L Z ##
ax F AE W Z ##
ax F AE B Z ##
ax F AE D Z ##
ax F AE G Z ##
ax F AE P Z ##
ax F AE T Z ##
ax F AE K Z ##
ax F AE SP Z ##
ax F AE ST Z ##
ax F AE SK Z ##
low pitch ===
ax F IY Z ##
ax F IH Z ##
ax F EY Z ##
ax F EH Z ##
ax F AE Z ##
ax F ER Z ##
AH F ax Z ##
ax F AH Z ##
ax F UW Z ##
ax F UH Z ##
ax F OW Z ##
ax F AD Z ##
ax F AA Z ##
ax F AY Z ##
ax F AW Z ##
ax F 0Y Z ##
ax F EL Z ##
ax F EN Z ##
ax F EM Z ##
=== high pitch ===
ax F IY Z ##
ax F IH Z ##
ax F EY Z ##
ax F EH Z ##
ax F AE Z ##
ax F ER Z ##
AH F ax Z ##
ax F AH Z ##
ax F UW Z ##
ax F UH Z ##
ax F OW Z ##
ax F A0 Z ##
ax F AA Z ##
ax F AY Z ##
ax F AW Z ##
ax F 0Y Z ##
ax F EL Z ##
ax F EN Z ##
ax F EM Z ##

500>



uous singing data. This material was then phonetically annotated, which required

approximately 40 hours for a relatively inexperienced labeler.

5.3.3 Non-Uniform Unit Selection
Philosophy

In order to take maximum advantage of the phonetic contexts in the recorded voice

data, a unit selection method was designed, based on the following principles.

e Instead of using fixed-size units that are prepared from the recorded voice data
ahead of time, units should be extracted from the phonetically-annotated in-
ventory during synthesis. This permits the use of variable-size units and better

preserves context information contained in the inventory.

e If desired strings of more than one phoneme are found in the inventory, these
should be used directly in synthesis, instead of being composed from concate-
nation of several smaller units. The number of concatentations should be made

as small as possible without compromising the phonetic content.

e Selection of the “optimal” unit at runtime should be performed with minimal

computational requirements.

Context decision tree/variable size unit selection

Although it is possible to formulate unit selection as a dynamic programming prob-
lem with “unit costs” and “concatenation costs,” and find an optimal path through
the lattice of all possible units in the inventory [80], the approach taken here is sim-
pler. The unit selection procedure allows variable-size units to be extracted from
the inventory to represent the phonetic sequence specified by the input. Since longer
units generally result in improved speech quality at the output, the method places a

priority on finding longer units that match the desired phonetic context.
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For a given phoneme P in the input phonetic string and its left and right
neighbors, P;, and Pg, the selection algorithm attempts to find P in a context most
closely matched to Pp, P Pgr. When exact context matches are found, the algorithm
extracts the matching adjacent phoneme(s) as well, to preserve the transition between
these phonemes. Thus, each extracted unit consists of an instance of the target
phoneme and one or both of its neighboring phonemes (i.e., it extracts a monophone,
diphone, or triphone). Figure 5.2 shows a catalog of all possible combinations of
monophones, diphones, and triphones, including class match properties, ordered by
their preference for synthesis.

In addition to searching for phonemes in an exact phonemic context, however,
the system also is capable of widening its search to find phonemes that may have
a context similar, but not identical, to the desired context. For example, if the
algorithm is searching for /ae/in the context /d/-/ae/-/d/, but this triphone cannot
be found in the inventory, the monophone /ae/ taken from the context /b/-/ae/-/b/
can be used instead, since /b/ and /d/have a similar effect on the neighboring vowel.
The notation of Figure 5.2 indicates the resulting unit output, along with a description
of the context rules satisfied by the units. In the notation of this figure, x,Pixg
indicates a phoneme with an exact triphone context match (as /d/-/ae/-/d/ would
be for the case described above). The label ¢;, Picg indicates a match of phoneme class
on the left and right, as for /b/-/ae/-/b/ above. Labels with the symbol P, indicate
a second unit is used to provide the final output phonemic unit. For example, if /b/-
Jae/-/k/ and /k/-/ae/-/b/ can be found, the two /ae/ monophones can be joined to
produce an /ae/ with the proper class context match on either side.

In order to find the unit with the most appropriate available context, a binary
decision tree was used (shown in Figure 5.3). Nodes in this tree indicate a test defined

by the context label next to each node. The right branch out of each node indicates

[4 b

a “‘no” response; downward branches indicate “yes.” Terminal node numbers corre-

spond to the outputs defined in Figure 5.2. Diamonds on the node branches indicate
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storage arrays that must be maintained during the processing of each phoneme. Re-
gions enclosed in dashed lines refer to a second search for phonemes with a desired
right context to supplement the first choice (the case described at the end of the
previous paragraph). The smaller tree at the bottom right of the diagram describes
all tests that must be conducted to find this second phoneme. The storage locations
here are computed once and used directly in the dashed boxes. To save computation
at runtime, the first few tests in the decision tree are performed offline and stored in
a file. The results of the precomputed branches are represented by filled diamonds
on the branches.

After the decision tree is evaluated for every instance of the target phoneme,
the (nonempty) output node representing the lowest score in Figure 5.2 is selected.
All units residing in this output node are then ranked according to their closeness to
the desired pitch (as input in the MIDI file). A rough pitch estimate is included in
the phonetic labeling process for this purpose. Thus the unit with the best phonetic
context match and closest pitch to the desired unit is selected.

The decision to develop this method instead of implementing the dynamic pro-
gramming method [80] was based on the following rationale: Because the inventory
was constructed with emphasis on providing a good coverage of the necessary vowel
contexts, “target costs” of phonemes in dynamic programming should be biased such
that units representing vowels will be chosen more or less independently of each other.
Thus a slightly suboptimal, but equally effective, method is to choose units for all
vowels first, then go back to choose the remaining units, leaving the already-specified

units unchanged. Given this, three scenarios must be addressed to “fill in the blanks”:

1. Diphones or triphones have been specified on both sides of the phoneme of in-
terest.
Result: a complete specification of the desired phoneme has already been found,

and no units are necessary.

2. A diphone or triphone has been specified on the left side of the phoneme of
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interest.
Result: The pruned decision tree in Figure 5.4 is used to specify the remaining

portion of the phoneme.

3. A diphone or triphone has been specified on the right side of the phoneme of
interest.
Result: The pruned decision tree in Figure 5.5 is used to specify the remaining

portion of the phoneme.

If no units have been specified on either side, or if monophones only have been spec-

ified, then the general decision tree in Figure 5.3 can be used.

Concatenation of units

Once the units necessary to cover the entire phonetic sequence have been specified,
concatenation of the units can take place. Each pair of units is joined by either a
cutting/smoothing operation or an “abutting” of one unit to another. The type of
unit-to-unit transition uniquely specifies whether units are joined (cut and smoothed)
or abutted. Figure 5.6 shows a “transition matrix” of possible unit—unit sequences
and their proper join method. It should be noted that the NULL unit has zero length

— it serves as a mechanism for altering the type of join in certain situations.

5.3.4 Musical Control Parameters
Pitch variation

Since the prosody modification step in the sinusoidal synthesis algorithm transforms
the pitch of every frame to match a target, the result is a signal that does not exhibit
the natural pitch fluctuations of the human voice.

In [102], a simple equation for “quasirandom” pitch fluctuations in speech is
proposed:

F
AF, = ﬁ (sin(12.77t) + sin(7.17t) + sin(4.77t)) /3. (5.1)
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The addition of this fluctuation to the desired pitch contour gives the voice a more
“human” feel, since a slight wavering is present in the voice. Bennett and Rodet [119]
propose a similar model. A global scaling of AFj is incorporated as a controllable
parameter to the user, so that more or less fluctuation can be synthesized.

Abrupt transitions of one note to another at a different pitch are not a natural
phenomena. Rather, singers tend to transition somewhat gradually from one note
to another. This effect can be modeled by applying a smoothing at note-to-note
transitions in the target pitch contour. Timing of the pitch change by human vocalists
is usually such that the transition between two notes takes place before the onset of

the second note, rather than dividing evenly between the two notes [121].

Rhythmic characteristics

The natural “quantal unit” of rhythm in vocal music is the syllable—each syllable
of lyric is associated with one or more notes of the melody. However, it is easily
demonstrated that vocalists do not execute the onsets of notes at the beginnings of
the leading consonant in a syllable, but rather at the beginning of the vowel. This
effect has been cited in the study of rhythmic characteristics of singing [121] and
speech [61]. LyRICOS employs rules that align the beginning of the first note in a
syllable with the onset of the vowel in that syllable.
In this work, a simple model for scaling durations of syllables is used. First an
average time scaling factor p,; is computed:
Snzq'* Dy

e (5.2)
m=1 m

Psyll —

where the values D,, are the desired durations of the V,,.s notes associated with the
syllable and D,, are the durations of the Np,, phonemes extracted from the inventory
to compose the desired syllable. If p,,; > 1, then the vowel in the syllable is looped
by repeating a set of frames extracted from the stationary portion of the vowel, until

psyu ~ 1. This preserves the duration of the consonants, and avoids unnatural time-
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stretching effects. If p,,; < 1, the entire syllable is compressed in time by setting the
time-scale modification factor p for all frames in the syllable equal to pgy.

A more sophisticated approach to the problem would involve phoneme- and
context-dependent rules for scaling phoneme durations in each syllable to more accu-

rately represent the manner in which humans perform this adjustment.

Vibrato

Most trained vocalists produce a 56 Hz near-sinusoidal vibrato. As mentioned,
pure frequency modulation of the glottal source can represent many of the observed
effects of vibrato, since amplitude modulation will automatically occur as the partials
“sweep by” the formant resonances. This effect is also easily implemented within the
sinusoidal model framework by adding a sinusoidal modulation to the target pitch
of each note. Vocalists usually are not able to vary the rate of vibrato, but rather
modify the modulation depth to create expressive changes in the voice [120].

Using the graphical MIDI-based input to LYRICOS, users can draw contours
that control vibrato depth over the course of the musical phrase, thus providing a
mechanism for adding expressiveness to the vocal passage. A global setting of the

vibrato rate is also possible.

Vocal tract length scaling

In synthesis of bass voices using the male voice inventory (recorded from a baritone
vocalist), it was found that the voice took on an artificial-sounding buzzy quality.
Through analysis of a simple tube model of the human vocal tract, it can be shown
that the nominal formant frequencies associated with a longer vocal tract are lower
than those associated with a shorter vocal tract [126]. Because of this, larger people
usually have voices with a “deeper” quality; bass vocalists are typically males with
voices possessing this characteristic.

To approximate the differences in vocal tract configuration between the recorded
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and “desired” vocalists, a frequency-scale warping of the spectral envelope in each

frame was performed, such that

H(w) = H(w/p), (5.3)
where H (w) is the spectral envelope fit to the sinusoidal components in the frame and
1 is a global frequency scaling factor dependent on the average pitch modification
factor. The factor p typically lies in the range 0.75 < p < 1.0. Values of u > 1.0
could be used to simulate a more child-like voice, as well. In tests of this method, it
was found that this frequency warping gives the synthesized bass voice a much more

rich-sounding, realistic character.

Loudness scaling

Simply scaling the overall amplitude of the signal to produce changes in loudness has
the same perceptual effect as turning the “volume knob” of an amplifier; it is quite
different from a change in wvocal effort by the vocalist. Nearly all studies of singing
mention the fact that the downward tilt of the vocal spectrum increases as the voice
becomes softer (e.g., [119, 120, 121]). This effect is conveniently implemented in a
frequency-domain representation such as the sinusoidal model, since scaling of the
sinusoid amplitudes can be performed. In LyRIcOs, an amplitude scaling function
based on the work in [119] is used:

_ Tinlog,(F1/500)
~ log,,(3000/500) ’

Guas (5.4)

where Fj is the frequency of the [th sinusoidal component and T;, is a spectral tilt
parameter controlled by a MIDI “vocal effort” control function input by the user.
This function produces a frequency-dependent gain scaling function parameterized
by 7},, as shown in Figure 5.7.

In studies of acoustic correlates of perceived voice qualities [127, 102], it has

been shown that utterances perceived as “soft” and “breathy” also exhibit a higher
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Figure 5.7: Spectral tilt modification as a function of frequency and parameter Tj,.
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level of high frequency aspiration noise than fully phonated utterances, especially in
females. This effect on glottal pulse shape and spectrum is shown in Figure 5.8. As
discussed in Section 3.3, it is possible to introduce a frequency-dependent noise-like
character to the signal by employing the subframe phase randomization method. In
LyRIcos, this capability has been used to model aspiration noise. The degree to which
the spectrum is made noise-like is controlled by a mapping from the MIDI-controlled
vocal effort parameter to the amount of phase dithering introduced.

Informal experiments with mapping the amount of randomization to (i) a cut-
off frequency above which phases are dithered, and (i7) the scaling of the amount of
dithering within a fixed band, have been performed. Employing either of these strate-
gies results in a more natural, breathy, soft voice, although careful adjustment of the
model parameters is necessary to avoid an unnaturally noisy quality in the output.
A refined model that more closely represents the acoustics of loudness scaling and

breathiness in singing is a topic for more extensive study in the future.

5.4 Qualitative Results

Because the field of singing synthesis is relatively immature in comparison to other
areas of speech synthesis research, the value of a direct comparison of one system to
another is somewhat questionable, and competing synthesis systems are difficult or
impossible to obtain. For these reasons, only a qualitative assessment of the LYRICOS

system is given here; demonstrations are available from the author upon request.

Phonetic modeling

As described in Section 5.3.3, the voice inventory design and unit selection methods
were created with the intent of modeling vowels and classes of C'V' (consonant-vowel)
and VC transitions well, at the expense of a more sparse representation of other

phonetic contexts. Empirical evaluation of the system verifies that this objective was
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Figure 5.8: Spectral characteristics of the glottal source in modal (normal) and breathy
speech (from [102]). Top: vocal fold configuration; Middle: time-domain waveforms; Bot-
tom: short-time spectrum.
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achieved. In general, sustained vowels and many simple C'V and VC' contexts sound
very natural, and the perceived identity of the synthesized voice is very close to that
of the original vocalist.

In contrast, intricate clusters of consonants (other than clusters explicitly in-
cluded in the inventory) are not modeled well. Because the inventory contains rela-
tively few instances of consonants in groups, the unit selection procedure selects small
signal segments that are not representative of natural coarticulatory phenomena, and
the voice sounds discontinuous and unnatural.

Alignment of the vowel portion of each syllable with note onsets leads to a
fairly natural rhythm in songs with a moderate to slow tempo, but the rhythm of
the voice becomes somewhat choppy and stilted at faster tempos. The lack of a
sophisticated duration model results in an abrupt and “over-articulated” effect in
rapidly articulated passages.

In general, the system is able to synthesize more natural sounding classical vocal
styles than other popular styles. This is due to the fact that a much more precise
articulation is required in classical music, rather than the more relaxed pronunciation
of other styles. Recording of an inventory sung by a vocalist singing in a more relaxed
style would possibly alleviate this problem, as would a more sophisticated duration

model that controls phoneme durations by context-dependent rules.

Concatenation and synthesis

In general, the algorithms for concatenation and smoothing of joined segments were
successful in producing a continuous, natural-sounding signal. However, one major
problem in the synthesis algorithm is the accurate estimation of pitch pulse onset
times. Frequent errors in onset time estimation occur, resulting in severe distortions
of the signal. As a result, much of the inventory voice data required manual correction
of pitch onset locations, a time-consuming and tedious procedure. The reason behind

the unreliability of the onset estimation methods described previously in this thesis is
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somewhat of a mystery. It may be that the characteristics of the particular vocalist
used or of the singing voice excitation source in general are not well-suited to the
onset estimation method. The development of a more robust analysis method is a
necessity for further enhancement of the system’s capabilities.

Another potential area of improvement relates to the spectral smoothing algo-
rithms described in Section 4.3.2. These methods were designed to smooth disconti-
nuities in only the vocal tract-related spectral envelope. However, differences in the
shape of the excitation model remaining after removal of the spectral envelope still
remain at the segment boundaries, and these are perceptible as abrupt changes in the
voice timbre. A more sophisticated level of smoothing would attempt to normalize

or smooth over differences in the spectral shape of the excitation as well.

Musical expression

A significant amount of time was spent on incorporating MIDI-controllable parame-
ters to enable expressiveness in the synthesized voice. The availability of control over
pitch variation and vocal effort correlates increased the naturalness and musicality of
the results dramatically.

A quasi-random drift of the pitch, coupled with a sinusoidal frequency mod-
ulation of 5 to 6 Hz resulted in a natural-sounding vibrato. Control of the depth
of vibrato enabled incorporation of effects such as a gradual increase in vibrato over
the duration of sustained notes. Incorporating a smooth pitch transition prior to the
onset of a new note was also effective.

A combination of amplitude and spectral tilt change was successfully used to
produce the effect of wocal effort scaling. This produced a voice with a scale of
perceived loudness levels, rather than giving the impression of a source changing
distance to the listener, which is the result of simple amplitude scaling only. A model
for incorporating breathiness in soft voice was also included. Although it was possible

to add frequency-dependent noise to the signal using this method, it was difficult to
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adjust the noise to a precise level that was perceivable but not distracting.
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CHAPTER 6

CONCLUSIONS

In this research, the application of the Analysis-by-Synthesis/Overlap-Add sinusoidal
model to synthesis of speech and singing voice was investigated, and a set of basic
extensions and improvements of the capabilities of the model were developed.

First, the application of the model to concatenation-based text-to-speech (TTS)
synthesis was described. Methods for concatenating segments extracted from a corpus
of recorded speech were presented, and challenges associated with removing percep-
tible mismatches in time/frequency structure around the segment boundaries were
identified. Methods for smoothing the signal near these boundaries using the sinu-
soidal model were presented. Results of a comparison between the new method and
the commonly-used Pitch-Synchronous Overlap Add (PSOLA) method indicated that
the method performs equally as well as an implementation of the PSOLA method for
the cases tested. It was argued that, although the sinusoidal model method perfor-
mance is similar to PSOLA for high-quality TTS, it presents a flexible framework for
exploring other effects in synthesis.

To demonstrate this capability, the text-to-speech synthesis method was ex-
tended to the synthesis of singing. It was shown that the sinusoidal model approach
enables the incorporation of various musically-interesting effects in the synthesized
signal. These effects include vibrato, pitch variation and transition effects, and signal
changes correlated with variation of vocal effort. Also in this work, methods of corpus

design and unit selection specifically designed for singing synthesis were developed.



Despite the fact that a relatively small voice inventory is used, the system is capa-
ble of synthesizing a musically-pleasing singing voice that maintains the perceived
identity of the vocalist recorded to create the unit inventory.

Finally, several improvements to the sinusoidal model itself were developed.
One pervasive artifact in speech modified by the original model is a “choppiness” that
occurs in unvoiced speech after downward pitch shifting of an utterance. The source
of this modulation was found by deriving a time-domain interpretation of the pitch
modification algorithm, and a method for eliminating the modulation effect was de-
rived and implemented. Another commonly-cited artifact referred to as “tonal noise”
occurs during unvoiced speech in utterances that are pitch-raised or time-expanded.
This artifact was mitigated by proposing a method for phase randomization based
on subframe synthesis of the signal. This method was also applied to synthesis of
breathiness in voiced speech and applied within the singing voice synthesis system.
Finally, artifacts due to errors in the estimation of pitch pulse onset times within each

frame were analyzed, and a method for mitigating these errors was developed.

6.1 Contributions

Contributions of the proposed work include the following:

e Development of a framework for text-to-speech synthesis using the ABS/OLA
sinusoidal model as a waveform synthesis engine, including methods for con-

catenating and smoothing disjointly-analyzed speech segments.

e Implementation and testing of the proposed algorithms as integrated with a

commercial TTS system.

e Development of a singing voice synthesis system based on the sinusoidal model
framework, including methods for controlling musically-interesting parameters

such as vibrato, pitch variation, and vocal effort.
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e Theoretical analysis of the ABS/OLA sinusoidal model behavior, explaining its

limitations.

e Extensions and improvements of the capabilities of the ABS/OLA sinusoidal

model for speech prosody modification, including

— development of a method for frequency-dependent synthesis of noise-like

signals using the sinusoidal model,;

— improvement in modification of unvoiced speech, overcoming or diminish-

ing common “tonal” noise artifacts;

— improvement in pitch modification methods to mitigate undesirable mod-

ulation effects;

— development of a method for correcting pitch pulse onset time errors in

the ABS/OLA model analysis algorithm.

6.2 Future work

Pitch pulse onset time estimation Perhaps the best way in which the ABS/OLA
sinusoidal model could be universally improved for all applications is by devel-
opment of more robust methods for estimation of the pitch pulse onset time.
Although a method for masking the effects of isolated errors in this parameter
was developed here (Section 3.4), this method is not capable of solving the more
serious problems associated with its role in concatenation of segments. Further
improvement of this analysis capability may involve viewing the problem in the

time-domain rather than the sinusoidal domain.

Transient speech modification The sinusoidal model is most effective in mod-
ifying signals that are stationary, due to its frame-based nature. Although
the ABS/OLA model can resynthesize nearly any signal accurately with no

modification, time-scale and pitch modification disrupt transient speech events
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significantly. Methods for identifying such events and applying models more

consistent with the nature of the signal are necessary.

Voice quality changes In the singing synthesis work, attempts to synthesize breathy
speech were made. Although it was observed that the phase randomization
model (Section 3.3) was capable of introducing noise-like energy in specific fre-
quency bands, it was found to be difficult to synthesize speech that was per-
ceived as natural with such a method. A study of the acoustic characteristics
of breathy speech and voice could be undertaken, with a focus on introducing
these effects in speech modification. Also, implentation of other glottal source

effects such as laryngealization [102] should be explored.

Excitation smoothing in concatenation The spectral smoothing algorithms de-
veloped for concatenation in Section 4.3.2 were effective in smoothing differences
in formant location to produce smoother-sounding synthetic speech. However,
further perceptible spectral differences (due to glottal source differences) often
still remain at the boundary of joined segments. Further methods of smoothing
spectral differences at concatenation boundaries should be explored to alleviate

this problem.

Rule-driven coarticulatory effects in synthesis In both singing synthesis and
TTS, concatenated segments often do not model all necessary coarticulatory
effects, especially in rapidly-spoken speech, where such effects may extend over
several adjacent phonemes. In the development of rule-based synthesis systems
over the last few decades, models that describe many of these phonological
effects have been implemented. However, this type of rule-based knowledge has
not been applied in concatenation-based systems. Using a flexible framework
such as the sinusoidal model, it may be possible to develop speech modification
strategies that can implement supra-segmental coarticulatory effects dictated

by knowledge derived from such rules.
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Duration models in singing synthesis As mentioned in Section 5.4, the duration
scaling strategies employed in the singing synthesis system are fairly rudimen-
tary. The naturalness of the vocal rhythm produced by the synthesizer can be
improved by incorporating ideas from the more sophisticated models of duration

scaling commonly used in T'TS synthesis.
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In this research, the application of the Analysis-by-Synthesis/Overlap-Add si-
nusoidal model to synthesis of speech and singing voice is investigated, and a set of
basic extensions and improvements of the capabilities of the model are developed.
First, the application of the model to concatenation-based text-to-speech (TTS) syn-
thesis is described. Methods for concatenating segments extracted from a corpus of
recorded speech are presented, and challenges associated with removing perceptible
mismatches in time/frequency structure around the segment boundaries are identi-
fied. Methods for smoothing the signal near these boundaries using the sinusoidal
model are presented. The implementation of this model within a commercial TTS
system serves as a research testbed. Results of a comparison between the new method
and the commonly-used Pitch-Synchronous Overlap Add (PSOLA) method indicate
that the method performs equally as well as the PSOLA method in the cases tested.

Next, through the extension of the text-to-speech synthesis method to the syn-
thesis of singing, it is shown that the flexibility of the sinusoidal model approach en-
ables the incorporation of various musically-interesting effects into the synthesized sig-
nal. These effects include vibrato, pitch variation and transition effects, and changes
correlated with change in vocal effort. Also in this system, methods of corpus design
and unit selection specifically designed for singing synthesis are developed. Despite
the fact that a relatively small voice inventory is used, the system is capable of syn-
thesizing a musically-pleasing singing voice that maintains the perceived identity of
the vocalist recorded to create the unit inventory.

Finally, several improvements to the sinsusoidal model itself are detailed. The



causes of artifacts present in the original ABS/OLA model are found by theoretical
and empirical analysis, and methods for eliminating or diminishing these artifacts
are presented. Among the innovations is a method for phase randomization based
on subframe synthesis of the signal. It is shown through the results of a subjective
comparison test that the method improves the quality of unvoiced speech synthesized

using the model.



