
EFFICIENT ANALYSIS/SYNTHESIS OF PERCUSSION

MUSICAL INSTRUMENT SOUNDS USING AN ALL-POLE MODEL

Michael W. Macon 1;2 Alan McCree 1 Wai-Ming Lai 1 Vishu Viswanathan 1

1DSP Research and Development Center, Texas Instruments, Dallas, TX 75265-5474
2Dept. of ECE, Oregon Graduate Institute, Portland OR 97291-1000

ABSTRACT

It is well-known that an impulse-excited, all-pole �lter
is capable of representing many physical phenomena,
including the oscillatory modes of percussion musical
instruments like woodblocks, xylophones, or chimes.
In contrast to the more common application of all-pole
models to speech, however, practical problems arise in
music synthesis due to the location of poles very close
to the unit circle. The objective of this work was to
develop algorithms to �nd excitation and �lter parame-
ters for synthesis of percussion instrument sounds using
only an inexpensive all-pole �lter chip (TI TSP50C1x).
The paper describes analysis methods for dealing with
pole locations near the unit circle, as well as a general
method for modeling the transient attack characteris-
tics of a particular sound while independently control-
ling the amplitudes of each oscillatory mode.

1 INTRODUCTION

It is well-known that the impulse response of reso-
nant bodies like percussion instruments can be mod-
eled as a sum of damped sinusoids whose frequen-
cies correspond to physical dimensions of the instru-
ment [1]. This makes all-pole digital �lters attractive
for computationally-e�cient synthesis of such sounds.
In addition, the popularity of the linear predictive cod-
ing (LPC) model for speech [2] has driven manufac-
turers to create e�cient and inexpensive hardware im-
plementations of all-pole �lters, like the TI TSP50C1x
speech synthesis chip [3]. Synthesizing speech and mu-
sical instrument sounds on the same hardware is at-
tractive for many consumer applications.
In recent work [4], a multi-channel all-pole model was

applied to synthesis of piano sounds; slightly more gen-
eral models can be shown to model a wide variety of
instruments [5]. Other work on percussion instrument
analysis includes [6], where additive synthesis of indi-
vidual partials was used to model heavily damped per-
cussion instruments, and [7], where parallel resonance
models were used.
This paper addresses two problems in analysis of per-

cussion instrument sounds. The �rst, described in Sec-
tion 2, involves estimating the location of a set of poles
near the unit circle to represent the instrument reso-
nances. The second, described in Section 3, involves
�nding an impulsive excitation that models the tran-
sient attack of a particular note, while simultaneously
exciting each resonant mode to its proper amplitude to
maintain timbral characteristics of the tone.

2 ALL-POLE MODEL ANALYSIS

2.1 Mode isolation

The �rst step in the analysis algorithm is to isolate indi-
vidual resonant components in the signal and �nd the
frequency and bandwidth of a pole that models each
resonance. The problem of �nding damped complex
exponentials in a signal is well-studied in statistical sig-
nal processing [8]. However, many methods are di�cult
to apply in this case because of long data records and
proximity of the poles to the unit circle. In our algo-
rithm, poles are isolated by performing \peak-picking"
on the Fourier magnitude spectrum to select the most
prominent components in the signal and then modulat-
ing each component to DC.
The number of partials that can be synthesized is

severely limited by the hardware (6 pole pairs for the
TSP50C1x), so only the most signi�cant modes can be
modeled. The following iterative algorithm was devised
to make a reasonable selection. First, the signal spec-
trum X(ej!) is computed via an FFT, and a smooth
spectral envelopeXcep(e

j!) is computed by cepstral lif-
tering [9]. The frequency ! corresponding to the largest
component in jX(ej!)j=jXcep(e

j!)j is chosen as a peak
location, after which the spectrum is weighted in the
neighborhood of ! to make further selection of compo-
nents in this region less likely. The selection is repeated
until 6 modes have been selected.
The weighting algorithm attempts to compromise be-

tween choosing the largest amplitude components and
choosing components that are maximally spread in fre-
quency. This is motivated both by masking e�ects in
the ear and by implementation issues: roundo� noise
problems in the �xed-point hardware implementation
tend to be much less severe when poles are spaced fur-
ther from each other in frequency.
For each resonant frequency !i chosen by the peak-

picking algorithm, the signal xi[n] corresponding to the
single mode is separated from the rest of the signal x[n]
by computing

xi[n] = h[n] � (x[n] + jx̂[n])ej!in (1)

where \�" represents convolution, x̂[n] is the Hilbert
transform of x[n], and h[n] is the impulse response of
a lowpass �lter. The cuto� frequency of h[n] is set
so as to attenuate other modes but not in
uence each
mode's decay envelope (a cuto� of 100-200 Hz was suf-
�cient). Given that extraneous frequency components
have been adequately �ltered out, the complex demod-
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Figure 1. Pole radius estimation. top: weighting vector; bot-

tom: mode envelope (dashed) and exponential �t

ulated partial xi[n] will have a smooth amplitude enve-
lope jxi[n]j that can be used to estimate the pole radius
(i.e., bandwidth).

2.2 Pole radius estimation

The pole radius is estimated by �nding a correla-
tion coe�cient for each component amplitude envelope
xenv [n] = jxi[n]j. Empirically, it was found that us-
ing a weighting function to emphasize the less variable
\tail" of the exponential decay produces better results.
The weighting function w[n] is computed as

w[n] =
1

1 + ~xenv [n]

where ~xenv [n] is a smoothed version of xenv [n] normal-
ized to the range [0; 1]. The correlation coe�cient is
then computed using a weighted least squares mini-
mization. Figure 1 shows the weighting function w[n],
the envelope xenv [n], and the function

v[n] = a0r
n�n0 (2)

where n0 is the time o�set from the beginning of the
signal to the maximum of the envelope, and a0 is an
initial amplitude. This value a0 is found via a sim-
ple least-squares minimization of the error between the
functions a0r

n�n0 and xenv [n].

3 EXCITATION MODELING

Maintaining the correct amplitudes of each mode rela-
tive to the others is essential to maintaining the correct
timbre (tone color) for the instrument. However, the
initial amplitudes a0 of each mode of oscillation cannot
be controlled by the pole locations|they are a function
of the input to the system. Because the poles are lo-
cated very close to the unit circle, using a single impulse
�[n] to excite the �lter can produce mode amplitudes
that are radically di�erent from the original sound.
This section describes two methods for �nding a de-

sirable excitation for the all-pole �lter. The initial con-
dition method �nds the minimum-length sequence to
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Figure 2. All-pole lattice �lter

excite the modes properly; the projection method ex-
tends this to �nd an excitation sequence that can also
model the transient attack characteristics of the instru-
ment.

3.1 Initial condition method

This approach speci�es a set of initial conditions for
the delay elements of the �lter, such that the modes
are properly excited when the �lter is run from this
initial state. This is analogous to the physics of many
instruments; e.g., pulling a guitar string to an initial
state and releasing it excites certain modes more than
others, depending on where the string is plucked along
the neck of the guitar [1].
In the hardware, a lattice �lter structure is used [9],

as shown in Figure 2. To �nd initial conditions for the
�lter, it is advantageous to write the lattice �lter as a
state-space system:

xn = Axn�1 +Bu[n]

y[n] = Cxn

where u[n] is the �lter input and y[n] is the �lter out-
put. P is the number of poles in the system, and xn
is a P � 1 state vector containing the values at time
n in the �lter delay registers across the bottom branch
of Figure 2. The matrices A, B, and C describe the
lattice �lter and depend only on the �lter tap weights
fkig.
The problem at hand is to �nd an initial state vector

x�1 such that each mode of oscillation will have the
proper amplitude in the output y[n] for n � 0. The
modes of the �lter can be isolated from each other by
performing an eigendecomposition of the matrix A,

A = S�S�1

where S is a matrix with the eigenvectors of A in its
columns and � is a diagonal matrix of eigenvalues. The
matrix S will be invertible if and only if the �lter has
nonrepeated poles [10], and this is guaranteed by the
peak-picking algorithm. The eigenvectors of A corre-
spond to the modes of the system, and the eigenvalues
correspond to the rate of decay of each mode.
Since the eigenvectors are linearly independent, we

can adjust the amplitudes and phases of the modes
independently in the initial state by making x�1
a weighted linear combination of the eigenvectors
fvkg [11],

x�1 =

P�1X

k=0

gkvk (3)



where

gk =
ake

j�k

Cvk

and ak and �k are the desired amplitude and phase for
the kth mode of the system, as found in Equation (2).
(The phases �k are somewhat arbitrary.) This gives a
set of initial delay register values that will excite the
modes to the desired amplitudes.
An equivalent method uses an input u[n] of length

P , where P is the number of poles. This method relies
on constructing a controllability matrix [11],

E =
�
AP�1B � � � A2B AB B

�
(4)

and �nding the input u = [u[0]; : : : ; u[P � 1]]
T

that
drives xn to the desired state at time P . The solution
for the desired input u is then u = E�1xP .

3.2 Projection method

The impact of a mallet, clapper, or other object strik-
ing an instrument produces a brief transient signal that
does not �t a low-order all-pole model. The realism of
a synthesized note can be enhanced by using a tran-
sient signal of a few hundred samples as the excitation,
found by inverse �ltering the input signal with the an-
alyzed pole frequencies and radii and truncating the
residual. When this excitation is used as an input to
the lattice �lter, however, there is again no guarantee
that the modes of the system will be excited to their
proper relative amplitudes. The method described here
overcomes this problem.
Given a length N excitation signal uD[n], the target

state at time N must be speci�ed to insure that the
resulting oscillatory modes will have the proper ampli-
tudes and phases. Since we seek an excitation that is
as close as possible to the inverse �lter residual uD[n],
it is advantageous to set the phases of each mode at
time N to be as close as possible to the actual phases
that result from using uD[n] as the system input.
The desired amplitude at time N is easily found by

aN = a0r
N�n0 . The phases at time N are found as fol-

lows. The approximate frequencies of the �lter output
are known from the peak-picking analysis, and the de-
cay constants of the modes are generally large enough
that the sinusoid amplitudes can be considered almost
constant over a small interval. The �lter response to
the input uD[n] just after the excitation is \turned o�"
can be approximated by

yD[n] �

P=2X

k=1

cke
j!kn + c�ke

�j!kn (5)

over some interval N + 1 � n � N +M . An optimal
solution can be found by performing a least squares �t
of coe�cients fckg to the data fy[N+1]; : : : ; y[N+M ]g.
The desired phases f�kg can then be found from the
phase angles of the complex coe�cients fckg. Finally,
given the target amplitudes ak and phases �k at time
N , the target state xN can be found via the sum of
eigenvectors in Equation (3).

Now, given the target state xN and a desired in-
put sequence uD[n] (u

D in vector notation), the task
is to �nd an input u that lies as close as possible to
uD and excites the modes to their proper amplitudes.
Borrowing the notation for the controllability matrix of
Equation (4), the problem can be phrased as follows:

Given uD[n] and a target state xN , �nd an
input u[n] such that

xN = Eu (6)

is satis�ed and the error

" =

NX

n=0

(uD[n]� u[n])2 (7)

is minimized over the range of all possible
inputs u[n].

Since Equation (6) represents an underdetermined
system of equations when the excitation length N is
greater than the number of poles P , it has no unique
solution. However, any solution of (6) must be of the
form u = u+ + uN , where u+ is in the row space of E
and uN is in the nullspace of E, denoted N (E). The
solution u+ is unique; thus the problem above can be
solved by �rst �nding u+, then �nding a vector uN 2
N (E) that lies as close as possible to the di�erence
vector uD � u+.
The row space component can be found by comput-

ing the pseudoinverse of E

E+ = Q2�
+QT

1 (8)

where Q2, �
+, QT

1 are found by performing a singular
value decomposition (SVD) of the matrix E [10]. The
row space solution is then

u+ = E+xN (9)

The vector u+ is the \minimum energy" solution to
Equation (6).
To �nd the nullspace component uN , the di�erence

vector uD � u+ must be projected onto the nullspace
of E. The matrix QT

2 from the SVD contains a basis
for the nullspace of E in its last N � r columns. A new
matrix V can be created by putting these nullspace
basis vectors into its columns. Then, the projection of
the di�erence vector onto the nullspace can be written

uN = VVT (uD � u+) (10)

Finally, these two components can be combined into
the �nal solution uopt = u++uN , which can be shown
to satisfy (6) and minimize the error in (7). An example
of such a decomposition for a xylophone note is shown
in Figure 3.
It can be seen that the nullspace input uN looks very

much like the desired input uD, but results in a �lter
output that is identically zero after it is \turned o�."
The input u+ is rather small in comparison, yet it is
responsible for all of the nonzero �lter response after
the input is turned o�.



4 IMPLEMENTATION

A �xed-point simulation was developed to test the ef-
fects of roundo� noise on the algorithm, and this was
used to scale the excitation to avoid register over
ow.
To improve accuracy in the �xed-point synthesis imple-
mentation, the re
ection coe�cients are quantized to
their 12 bit representation before inverse �ltering and
computing the excitation projection. It is important to
note that the inaccuracies of the pole location quanti-
zation and inverse �ltering are compensated for by the
projection technique { the projection of the residual
guarantees that the modes will be properly excited to
recreate the timbre of the original sound.
In experiments with several instrument sound sam-

ples, it was found that very good results are obtained
for sounds containing 6 or fewer signi�cant modes (the
upper limit of the TSP50C1x hardware capability), and
having pole radii smaller than r = :999. Reasonable
choices were usually made by the peak-picking algo-
rithm, but a few required manual selection of signi�-
cant modes.
For some sounds, especially xylophone and wood-

block, using a 100{200 sample excitation sequence (at 8
kHz sampling rate) made a drastic di�erence in the re-
alism of the synthesized note. For instruments excited
by a nearly ideal impulse (e.g., metallic instruments
like chimes or bells) the initial condition method was
su�cient to model the transient attack portion of the
signal.
Systems with several poles spaced close together and

having radii very close to 1 (e.g., low frequency church
bells with a decay of several seconds) tended to have
di�culties with roundo� noise and limit cycles in the
�xed-point implementation. Although the conditions
under which these e�ects occur could be more thor-
oughly analyzed, the constraints of the hardware make
them hard to address.
The analysis computation associated with the projec-

tion operation in Equation (10) becomes signi�cant as
N (the number of samples in the excitation sequence)
becomes large. Values ofN < 500 were not problematic
on a moderate-power workstation, and this is su�cient
under the severe memory constraints of the target ap-
plication. (The complexity of the end-user synthesis is
�xed.)
In summary, the algorithm described in this paper

provides a means for independent control of factors in-

uencing the timbre of synthesized percussion sounds.
By its implementation in readily-available hardware,
the method has been shown to make e�cient, high-
quality synthesis of such sounds possible for many con-
sumer applications.
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Figure 3. Plots showing various elements of excitation decom-

position for a xylophone note. Left hand side are excitation sig-

nals; right hand side are �lter responses to each excitation. The

decomposition separates the excitation into a row space compo-

nent that controls mode amplitudes and a nullspace component

that does not excite the �lter resonances.


