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ABSTRACT

Concatenative "selection-based" synthesis from large

databases has emerged as a viable framework for TTS

waveform generation. Unit selection algorithms at-

tempt to predict the appropriateness of a particular

database speech segment using only linguistic features

output by text analysis and prosody prediction compo-

nents of a synthesizer. All of these algorithms have in

common a training or \learning" phase in which param-

eters are trained to select appropriate waveform seg-

ments for a given feature vector input. One approach

to this step is to partition available data into clusters

that can be indexed by linguistic features available at

runtime. This method relies critically on two important

principles: discrimination of �ne phonetic details using

a perceptually-motivated distance measure in training

and generalization to unseen cases in selection. In this

paper, we describe e�orts to systematically investigate

and improve these parts of the process.

1 INTRODUCTION

Since the late 1980's [1], \selection-based" concatena-

tive synthesis from large databases has received in-

creased interest as a potential improvement upon �xed

diphone (or demiphone, etc.) inventories. In princi-

ple, a greater number of units should be able to more

accurately realize several types of variability in the out-

put (e.g., vowel reduction, end-of-phrase voice quality

changes), and for very large databases even appropriate

F0 contours and segmental durations. In practice, these

large-corpus methods tend to result in output speech

quality that can be very good or very bad depending

on the similarity of the input text to items in the syn-

thesizer database. Thus, many unsolved problems exist

and further research e�ort is needed.

All unit selection algorithms have in common a

training phase in which parameters are trained to

provide selection of appropriate waveform segments.
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These methods rely critically on two important prin-

ciples: (i) discrimination of �ne phonetic details using

a perceptually-motivated distance measure in training

and (ii) generalization to unseen cases in runtime se-

lection. In this paper, we discuss several issues related

to design and optimization of a tree-based clustering

algorithm for unit selection. Section 2 reviews current

approaches to unit selection including the tree-based

method and discusses their mechanisms for learning,

generalization, and discrimination. In Section 3, we

discuss a perceptual experiment designed to test the

correlation of several well-known distance measures to

human judgements of similarity between speech seg-

ments. In Section 4, we describe a method for creating

selection trees and show that it can be improved by

incorporating a measure of its ability to generalize in

the training process.

2 UNIT SELECTION APPROACHES

All speech synthesis algorithms attempt to generate

acoustic features of speech using as input only the lin-

guistic target features produced by the text/prosodic

analysis components of the synthesizer. Unit selection

algorithms do this by attempting to predict the ap-

propriateness of a particular database speech segment

using only these linguistic targets. A \unit" can be

any quantal size from a word to phone to sub-phone.

Features can include categorical or numeric values like

place/manner of articulation of N units to the left and

right, stress, F0 targets, duration, etc. Denoting the

linguistic features of a target and database candidate

unit lt and lc, respectively, and the acoustic features

of a target and database candidate unit at and ac, re-

spectively, the the task in synthesis of an utterance is

the following:

Given a sequence of linguistic target fea-

tures flt0; l
t
1; :::; l

t
Ng, �nd the sequence of

candidate segments with linguistic features

flc0; l
c
1; :::; l

c
Ng, that will minimize an acous-



tic feature distance

d(fat0; a
t
1; :::; a

t
Ng; fa

c
0; a

c
1; :::; a

c
Ng):

The acoustic target features at of the speech segments

to be synthesized are not known at run-time; these

must be predicted automatically in some way after

training on a database. Since it is impossible to create

a speech database that contains all possible combina-

tions of linguistic feature contexts, some of the inputs

lt will not have been seen previously in the database,

thus the algorithm must generalize to �nd outputs for

these cases. The function d(�; �) can take into account

both \target cost" between target ati and candidate

aci and \concatenation cost" between selected units

aci and a
c
i+1 [2].

In the discussions that follow, we focus mainly on

target cost. That is, given an input linguistic feature

vector lt, �nd the database candidate with linguistic

features lc that should minimize d(at; ac), even though

we don't know at explicitly.

2.1 Training a distance function

The work of Hunt, Black, Campbell, et al. in the

CHATR system [2, 3] uses a linear regression technique

to train a function

D(lt; lc) =
X

i

wi

��f(lti)� f(lci )
��2 ; (1)

where f(�) is a mapping from categorical linguistic fea-

tures like \place of articulation" to numeric values.

This mapping can also be structured as a table lookup

f(lti ; l
c
i ). The weights wi are trained to minimize the

average di�erence between D(lt; lc) and d(at; ac), the

true acoustic distance, over the entire database. Selec-

tion at runtime is based on choosing the N database

candidates with smallest cost D(lt; lc) for each tar-

get unit, then considering concatenation cost between

them. A dynamic programming search is used to jointly

minimize these costs.

Ultimately, the function D(lt; lc) should predict hu-

man judgements of similarity between units lt and lc.

Whether or not this is true depends on two funda-

mental assumptions. First, the acoustic distance mea-

sure d(at; ac) used to train D() must mimic human

judgements of di�erence between segments lt and lc.

In [2], the root-mean-squared (RMS) mel-cepstral dis-

tance over the segments was used. Second, the algo-

rithm must be able to generalize to accurately predict

D(lt; lc) for unseen lt and select an appropriate unit

in these cases. Gradual deviations of lt away from a

particular lc should correspond to gradual increases in

D(lt; lc) in a way that also mimics ordering of human

judgements of phonetic quality di�erence. Because the

linguistic features are for the most part categorical, the

mapping function f() plays a critical role in determin-

ing whether or not this is true.

2.2 Clustering

Another approach to the training step is to partition

the candidates (each described by linguistic feature vec-

tor lci and acoustic feature vector aci) into clusters

containing \similar" units, using a distance measure

d(aci; a
c
j). Unit selection at run-time corresponds to

indexing into these clusters using target features lc and

choosing one member of the best cluster for each target.

A binary decision tree is a useful and computation-

ally-ef�cient mechanism for performing this clustering

and indexing. Most approaches to binary tree cluster-

ing draw on elements of the Classi�cation and Regres-

sion Trees (CART) methodology proposed by Breiman,

et al. [4]. In the training process, for a particular node

in the tree, all binary splits along dimensions of the lin-

guistic feature vector lc are considered. The splitting

question that results in the most \compact" child clus-

ters (i.e., those having the minimum entropy or vari-

ance) is kept at each stage, and the process is repeated.

In work by Black and Taylor [5] and others [6, 7],

and in the system described in Section 4, a weighted

average of a distance measure d(aci; a
c
j) over all pairs

of units in the cluster is used as a measure of intra-

cluster variance. The power of the algorithm to �nd

judicious splits of the data and provide appropriate

synthesis units is based directly on the ability of the

distance measure d() to mimic human judgments of

acoustic similarity.

In work by Donovan [8], the measure of cluster vari-

ance is based on log-likelihood of the data when a Gaus-

sian distribution is �t to the candidates in the child

clusters. This is similar to using a distance weighted by

the inverse covariance matrix of the cluster (i.e., Maha-

lanobis distance). Here it is assumed that a squared dif-

ference of the feature vectors (e.g., MFCC's) will mimic

human judgements of acoustic di�erence. A similar

phonetic decision tree approach has been followed by

others in both speech recognition [9] and synthesis [10].

In the clustering approach, an input vector not seen

in the training data will still move down the tree until

it resides in some terminal node. By virtue of the tree-



growing procedure, a fundamental assumption is that

the candidate units residing in this terminal node will

be acoustically similar to the hypothetical target acous-

tic target vector at. Thus the generalization power of

the algorithm depends on when the partitioning of the

data is stopped. If tree growth is not stopped soon

enough, the tree will become biased towards the units

in the training data, and too many good matches to

a previously-unseen input will be excluded from con-

sideration. If it is stopped too early, too many poor

units will be considered. Most published approaches

to binary tree clustering have used stopping thresholds

(e.g., stop splitting when the relative improvement in

variance is less than x%) to halt tree growth. In Sec-

tion 4, we discuss the merits of using cross-validation

during tree-growing to optimize the tree's power to gen-

eralize to unseen cases.

2.3 Training a generation function

The methods described above generate acoustic fea-

tures of speech using only the linguistic target features

of the synthesizer, but they do so in a very indirect

manner. It is also possible to structure the problem as

a direct mapping

at = g(lt): (2)

Rule-based formant synthesizers accomplish the

linguistic-acoustic mapping at = g(lt) by using hand-

coded tables of formant targets and smoothing func-

tions. Articulatory synthesizers do the same to gen-

erate articulator positions, and add the extra step of

computing the output of a vocal tract physical model.

In these cases, the distance measure d() enters the prob-

lem through the metric used by the developer tweaking

the rules { i.e., listening to the output, which really does

mimic human judgements. Generalization capability is

controlled by the \correctness" and comprehensiveness

of the smoothing rules to behave appropriately for cases

the developer has not checked in the development cycle.

Data-driven approaches to a direct mapping have

also been proposed, often based on neural networks

(e.g., [11, 12]). In this case, the neural network learns

a correspondence between input vectors lt and fea-

ture targets at, as well as implicit context-dependent

smoothing functions realized by including time-delayed

feedback terms in the network. Phonetic distance mea-

sures enter the training algorithms through the net-

work weight update measures { a perceptually well-

motivated measure will optimize the weights most ef-

fectively. The advantage of this approach is a much in-

creased power to generalize in comparison to waveform-

based unit selection. The direct mapping can, to a lim-

ited degree, create new units for contexts that were not

recorded in the database at all, whereas in unit selec-

tion this is only accomplished by assuming that a unit

from a di�erent context can be substituted in its place.

The drawback is of course, that it is di�cult to

learn a direct mapping, and this means that a rela-

tively simpli�ed speech model must be used { e.g., a

Klatt formant synthesizer, pulse-excited LPC or cep-

stral coe�cients. Many di�cult-to-model details of

the signal captured in waveform concatenative synthe-

sis are thrown away to create a simpli�ed model with

few enough parameters to be reliably estimated.

3 DISCRIMINATION EXPERIMENT

The preceding section has established the fact that a

critical component of all unit selection algorithms is a

measure of distance between speech segments. This

measure must be designed to correspond to human

judgements of similarity/di�erence.

Furthermore, the requirements on distance measures

for synthesis are somewhat more stringent than in au-

tomatic speech recognition (ASR) algorithms. In ASR,

the task at hand is to statistically discriminate phones

in order to decode the underlying phoneme sequence.

In TTS, on the other hand, the task is to choose the

most perceptually appropriate item from a set of simi-

lar allophones { a much more di�cult task.

We have examined the discriminative power of sev-

eral well-known distance metrics through a test of per-

ceptual judgements of allophonic variations. Others

have investigated distance measures in the context of

speech coder evaluation (e.g., [13]), improving ASR

performance [14, 15], and in more general studies of

distance perception [16]. Some recent work studied

the use of an auditory model to predict concatenation

discontinuities in sine-wave arti�cial formants [17]. In

contrast, the test to be described here is based on sub-

stituting segments of speech in an otherwise normal

utterance (it tests \target cost"), using conditions very

similar to those found in a selection-based synthesizer.

3.1 Perceptual test data

The test database consisted of 166 pairs of CVC words,

each pair containing a reference word and a modi�ed

version of the same word. The reference words were

created with a diphone synthesizer [18], with care taken

that there were no noticeable spectral discontinuities at



/ ih // t / / p /

/ ih / / k /

Figure 1. Illustration of segment substitution in modi�ed ver-

sion of word \tip" (Category III).

the join point in the vowel. The modi�cation consisted

of replacing half of the vowel by a instance of the same

vowel taken from a di�erent context, as illustrated in

Figure 1. To make the experiment a manageable size,

the reference words were limited to three categories:

Category I : consonant{vowel{nasal (/n,m,ng/)

Category II : glide (/w,r,l,y/){vowel{consonant

Category III : cons{vowel{voiceless stop (/p,t,k/)

All were actual English words. In Category I and III,

the second half of the vowel was substituted; in Cat-

egory II, the �rst half of the vowel was substituted.

In 38 of the pairs, the two words were identical, and

these were used as a control group. Listeners were

presented with each pair and asked to rate their dis-

tance on a scale from 0 (identical) to 4 (very di�erent).

Fifteen subjects participated in the test (one subject's

responses were rejected because they fell signi�cantly

outside the distribution of the other fourteen).

3.2 Objective measure data

We considered the correlation of the perceptual data

to �ve di�erent feature extraction methods: LPC- and

FFT-based cepstral coe�cients, line spectral frequen-

cies, log area ratios, and the Itakura distance (see [19]

for descriptions). These were coupled with two di�erent

spectral pre-warping schemes: (i) mel-scale frequency

warping and (ii) a frequency-dependent loudness scal-

ing and Bark-scale frequency warping used in the per-

ceptual linear prediction (PLP) method [20]. These

features (all LPC-based measures used 12 dimensions)

were extracted from the speech segments at regular in-

tervals. Features from the shorter of two segments of

di�erent length were linearly warped to the longer du-

ration The objective measure of distance used was the

average squared di�erence of the time-aligned feature

vectors.

linear PLP Mel

FFT cepstra 0.49 0.62 0.64

LPC cepstra 0.48 0.61 0.64

line spectral frequencies 0.34 0.57 0.58

log area ratio 0.28 0.55 0.52

Itakura distance 0.50 0.61 0.64

Table 1. Correlation between perceptual distances and several

objective measures. Boldface numbers are the best results.

3.3 Results

Table 1 shows the weighted average of correlation co-

e�cients computed in each of the phonetic categories

above (using a Fischer transformation [21]). The best

correlations were found using a mel-scale cepstral repre-

sentation (MFCC), however PLP-based measures were

also within the margin of error of the test (�0:05).

When delta (slope) features were added to the repre-

sentation, increases to a correlation of 0.68 were found

for the best case. This is in the neighborhood of the

best correlations found in speech coding tests described

in [13]. For more detailed analysis of the results, please

see [22].

Although \higher is better," it is di�cult to discern

whether a correlation of 0.68 is good enough for unit

selection. An interesting alternative measure is to set a

threshold in the perceptual responses (0,1=`good' and

2,3,4=`bad'), and investigate the detection versus false

alarm characteristic of the MFCC measure. That is,

if we set an MFCC distance threshold, what percent-

age of `good' units will be classi�ed as `bad' and vice-

versa? For unit selection, this describes the probability

of not selecting good units versus choosing inappropri-

ate units.

The plots of this characteristic for each test category

(I, II, III) and for four di�erent vowels (/ae,aa,iy,uw/)

in the CVC exemplars are given in Figure 2. A curve

that is squeezed into the upper left corner of the plot is

near-optimal; a diagonal line with a slope of 1.0 shows

that the measure gives no information. For example,

for the vowel /iy/, the measure seems to perform quite

poorly. For the 'glide-/ae/-C' exemplars, the perfor-

mance is better. Because these results are based on

relatively few data points, we feel that further exper-

iments are needed to draw quantitative conclusions.

However, these preliminary results suggest that sim-

ple, well-known measures like the ones considered in

this study are not su�ciently reliable to guarantee opti-

mal results in unit selection. Development of measures
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Figure 2. Probability of detection versus probability of false

alarm characteristics for segment classi�cation into 'good' or

'bad' perceptual categories. Each point on the curve describes

the probability of selecting good units versus the probability

of choosing inappropriate units.

better suited to allophonic discrimination is needed.

4 GENERALIZATION EXPERIMENT

In Section 2, we argued that all synthesis algorithms,

including unit selection methods, must show some

power to generalize to unseen cases. In the clustering

approach to unit selection, this is accomplished by stop-

ping the growth of the tree before it becomes too biased

toward the training data. In most previous approaches,

the growth of binary trees is halted through the use of

a stopping threshold. Manual setting of thresholds is

tedious, and provides no criterion of optimality in gen-

eralizing to unseen inputs.

In this section, we consider a cross-validation method

for optimizing tree size automatically based on the

tree's role in the unit selection process. The method

is reminiscent of the cross-validation technique used for

classi�cation in the CART method [4], with some mod-

i�cations.

In this approach, a \development set" is held out

from the database during tree-growing (clustering). In-

stead of using a �xed stopping criterion, the tree is �rst

grown to its maximum size. At this point, a recombi-

nation process is begun by considering the e�ect of re-

ducing the size of the tree on the average distance from

the development set. This is done by dropping into the

tree the linguistic description vector lc of each unit in

the development set, and computing the average dis-

tance of the selected cluster to the acoustic features ac

for each unit. At each stage, the terminal nodes that,

when combined upward worsen the training error the

least are pruned. In this process, we are guiding the

recombination by measuring the power of the tree to se-

lect appropriate units for the unseen cases. The recom-

bination is continued until the tree consists of only a

single node. This produces a curve similar to Figure 3,

from which a minimum can be found. This minimum

corresponds to the tree that is \optimally pruned" with

respect to the development set. The process can be

repeated after shu�ing the development/training set

division.

Using a single-speaker database of phonetically-

balanced sentences, the performance of the cross-

validation method was compared with the performance

of two common stopping criteria: (a) a minimum units

threshold, which sets a lower limit for the number of

units in a node and stops splitting at that point, and (b)

a minimum improvement threshold which stops split-

ting when measures of intra-cluster variance fail to im-

prove more than a speci�ed percentage.

In these tests, the cross-validation method acheived

approximately 15% better objective distortion scores

than threshold methods, while requiring no hand-

tuning. More details of the results of this experiment

can be found in [23]. In related experiments for ASR

using log likelihood as the distance metric [9], cross-

validation performed about the same as a threshold

method, but was preferred for the fact that it was au-

tomatic.

Of course, the real question remaining to be an-

swered is whether or not the objective distance mea-

sure improvements seen in this experiment will trans-

late into clear improvements in the subjective quality

of the speech produced.

5 DISCUSSION

This paper has reviewed several recent approaches

to unit selection-based concatenative synthesis, and

pointed out the need to consider both measures of pho-

netic discrimination and generalization in their design.

Future e�orts in this area should be directed in sev-

eral areas, including more detailed perceptual studies

applicable to synthesis, speci�cally tests of concatena-

tion detection in various environments. Better mea-

sures need to be devised, and these will probably need

to incorporate time- and frequency-domain masking

principles [24]. More detailed study of invariances in
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Figure 3. Average distance of units in selected cluster to units

in the development set during cross validation, as a function of

the number of leaves in the tree. The tree is maximally grown,

then pruned back (right to left across the x-axis). (Lower is

better on the y-axis.)

speech data should be considered, and \feedback" of

these results into database design must happen to max-

imize coverage of important variability. Finally, further

attention should be paid to using signal models that can

modify more than F0 and duration (perhaps phonetic

reduction, voice quality changes, and other e�ects). In

this way, e�orts can be made to combine the advan-

tages of parametric models and waveform-based unit

selection.
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